Camera integration with
UPnP to openHAB

Blanc Antoine, Law Christopher
RICM4

Table of contents

Table Of COMEENLS ..ottt 1
INETOAUCEION ...ttt a e s st sa e 2
TOOIS ettt et b bbbt bbbt et et et ettt nen 2
D-Link UPnP camera binding..........ccooceeveiiiienieiirieieseeeeeeeeese et 3
1Y [o) s W 1< Yol o) o RO UUSRRSRPRS 5
Encountered ProDIEMISc.coiiviiriiiirieiesee ettt ettt 7
IIMNPIOVEIMIEIIES ...ttt ettt et et s e st e bt e saeesaee e bt e sseesmeeeanean 8
(@) 2T L1 T3 T) o PSR S R R 9

PAGE1

Introduction

OpenHAB is an open source application which allows devices to be
controlled through a dedicated interface. In order to be up to date without limits,
it is maintained by a community of users and is mainly coded with Java which

allows a great compatibility with a lot of devices.

For this project, our main goals is to contribute to openHAB and to

implement a motion detection with the provided cameras.

Tools

2 cameras from D-Link model that both support UPnP protocol:

. DCS-5222L

Features: pan and tilt

Output: MPEG for video and JPEG for image

. DCS-932L

Output: MPEG for video and JPEG for image

@ 0 p en H A B openHAB application which provides the interface

Trrempowering the smart home AN @ design to produce our smarthome.

@ eclipse Eclipse smarthome framework which contains a lot
smarthome of features and modules to design a Smart Home
solution according to our needs.

PAGE 2

D-Link UPnP camera binding

In order to contribute to openHAB with a new binding, we decided at first
to use the code made by the last year team. However, when contributing to an
open source, it's needed to follow a coding guideline which is in our case the Java
coding guideline. Moreover, it's also needed to follow the design given by
openHAB. That’s why, we decided to recreate a new binding, with the help of the
last year project. We used some codes from their binding but we changed a lot

of parts to make an easier contribution and fit to the openHAB design.

In order to recreate a binding, we generated a skeleton provided by
openHAB through the IDE Eclipse. Once created, it's time to read a lot of
documentations and examples from other bindings. Indeed, even if reading
documentations is a start, we need to see how it works when it’s working. So we
tried using the demo provided by openHAB when it’s installed and the binding

created last year.

To implement the discovery, we wused the Eclipse smarthome
documentation and the other bindings. Once the cameras discovered, they are
added to openHAB as a Thing, which represents an entity. Then, a Thing can be
added to the inbox order to configure their parameters. In our case, a camera
needs to configure parameters such as the username or the password. The other
parameters are defined by default because they can be in common with the
parameters of other devices. Besides, the UDN (Unique Device Name) is

provided when it is discovered on the local network.

PAGE 3

@Mgpenﬂ.ﬁg Edit dlinkupnpcame

5 Conral
L
@ inbox @
£ Configuration
stem :
o COangUrathrl Parameters
Bindings Configure parameters for the thing.
Services Unique Device Hame Connestion retresh
Things bc329e00-1da8-1102-8601-28107b 13027 30 [
* The U iderttus e carmera Eomcity the retreat wteval = neterds
Add-ons
Usernane P
D Preferences
adman azerty
The usermame for suthernication to camers The paawwerd for susthentcaton 1o camers
Command request LB reperory g recparat URL repestery
fegi/ptde cgiicommand fimage/peg ogi
Lirk for command request in URL Link fior image request in URL

Paper Ui

Configuration panel for the camera

When they are configured, the cameras can be controlled in the control
panel in the Paper Ul interface. Cameras with a pan and tilt control have
buttons to control them remotely. Finally, each camera provides a static image
that can be refresh. It is automatically refreshed according to a refresh
parameter set in the camera configuration. In addition, during the refresh, we

also check if the camera is alive and update the camera status.

Control

@ Inbox @
£ Configuration DCS-5222L @ DCS-932L @
® Addons ° Pan ° ° ° o Image °
£} Preferences ° Tilt ° ° °
0- o
Paper Ul

openHAB interface with cameras control

PAGE 4

Video from cameras can be displayed on the basic Ul when the sitemap is
defined with a webview.

<« Cameras Upnp

Videos displayed from the cameras on the Basic Ul interface

Once the binding was done, it was time to make a pull request to the GitHub
repository.

Motion detection

Controlling remotely a camera is interesting, but make it detect motion is
better. That’s why, we decided to implement a motion detection for the cameras.
In order to make it more relevant, we mainly used the camera model with PT
(pan - tilt) control which is the DCS-52221. model. However, it still works with

any other camera.

In order to implement the motion detection, we mainly used a binding of
openCV in Java. openCV is a library of functions which are commonly used in

image processing and real time computer vision.

PAGE 5

To work, motion detection needs to be divided in several steps. We chose
to implement the algorithm of subtraction as it is a common solution for motion
detection. First of all, a video stream is needed as a support for the detection.
Then each image is processed and compared with previous image. During this
step, the image is switch to gray scaled image and filtered by a Gaussian filter to

make some blurs and reduce the noise.

After this, we define a threshold to convert the colors to only white and
black which is called binarization. Finally, we detect the outlines from the image
and create rectangles to surround these outlines and make visible the areas with

motion.

Once we implemented the algorithm for the motion detection, we needed
to make use of it. Therefore, we chose to implement the camera tracking along
with the motion detection. When a motion is detected, we had 2 choices: the
camera follows the biggest area of motion or it considers all the detected motions

which are still filtered in order to avoid noise in the detection.

PAGE 6

For our demonstration, we decided to take the second choice because the

first one can give random outputs if we have several people on the screen.

Encountered problems

During the project, we face several issues concerning the cameras. The
first one was that in order to discover these cameras through the UPnP
protocol, we couldn’t use a network that doesn’t allow multicast. That’s is why
we had to use our personal local network to get an access to the cameras with

UPnP.

The other one is the configuration of cameras because they can only be
connected to the network with a software that only supports Windows and
Mac. However, as a Linux user, a tool like Wine can be used to install Windows

supported software.

Then, we encountered problems with the installation of openHAB. For
instance, we used at first openHAB through the terminal with Karaf. However,
even if it was a complete version, setting up the different parameters and
installing personal binding wasn’t easy. Moreover, to test the binding, it was
needed to create a jar every time something was changed. That’s why, we
decided to install openHAB through Eclipse which was at the end more
convenient because new code could be tested right away. However, installing
openHAB with Eclipse isn’t clean because it always come with some errors in

the build. Therefore, we needed to fix these errors before trying anything new.

Concerning openHAB, it’s not easy to handle the coding way at first
because the documentation isn’t clear and divided. However it can be explained
by the fact that they recently switched to openHAB2 which still use the first

version but with some improvement and the use of Eclipse smarthome.

PAGE 7

Nevertheless, after several weeks of understanding, the coding way became

more natural.

Improvements

Currently, the motion detection only activate a tracking with cameras
which support PTZ (pan, tilt, zoom) controls. However, to go further, we can
implement a monitoring system where every time a motion is detected, we send

an e-mail to the user.

Another improvement is the integration of the motion detection into
openHAB but problems with the library integration have to be dealt with.
Then, currently, even if our motion detection is working we can still improve it
notably on the precision of the detection but it will need more complex

algorithms.

Finally, we can still improve the binding as it is our first binding for

openHAB.

PAGE 8

Conclusion

Making this project wasn’t easy but we learned a lot about open source
project and how they work. Trying to contribute to an open source isn’t easy as
it requires to learn how to code in the same way as the project we want to
contribute and read a lot of documentation. However, participate to an open-
source community give a rewarding feeling as if we achieved something. We
learned a lot thanks to the help of the community and contributing to other

open source project might be interesting.

PAGE 9

