IoTivity: a standard, open-source framework for tomorrow’s IoT

ZEGAOUI Taquyeddine

November 25, 2016
Table of contents

Introducing IoTivity

Architecture of IoTivity

Perspectives & Evolution
By 2021, what will be the total number of IoT devices connected?

- Around 70 million
- Around 2 billion
By 2021, what will be the total number of IoT devices connected?

- Around 70 million
- Around 2 billion
- Around 28 billion
By 2021, what will be the total number of IoT devices connected?

- Around 70 million
- Around 2 billion
- Around 28 billion
- Countably infinite
By 2021, what will be the total number of IoT devices connected?

- Around 70 million
- Around 2 billion
- Around 28 billion
- Countably infinite
Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
IoTivity: a standard, open-source framework for tomorrow’s IoT

Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
- Risks of malicious attacks or intern errors
Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
- Risks of malicious attacks or internal errors
- Variety of hardwares and technical constraints
Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
- Risks of malicious attacks or intern errors
- Variety of hardwares and technical constraints
- Variety of softwares and functional needs
Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
- Risks of malicious attacks or intern errors
- Variety of hardwares and technical constraints
- Variety of softwares and functional needs
IoTivity: a standard, open-source framework for tomorrow’s IoT

Introducing IoTivity

Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
- Risks of malicious attacks or intern errors
- Variety of hardwares and technical constraints
- Variety of softwares and functional needs

What can be done to guarantee safe and performant IoT systems?
Predictions

- According to Ericsson, 28 billion devices by 2021
- Markets&Markets value 2022’s IoT market to 884 B$
- Risks of malicious attacks or intern errors
- Variety of hardwares and technical constraints
- Variety of softwares and functional needs

What can be done to guarantee safe and performant IoT systems?
IoTivity: what is it?

Enter IoTivity,

- Born from the OCF
- Open source and distributed under Apache License
IoTivity: what is it?

Enter IoTivity,

- Born from the OCF
- Open source and distributed under Apache License
- First release from 18th December 2015
IoTivity: a standard, open-source framework for tomorrow’s IoT

Introducing IoTivity

IoTivity: what is it?

Enter IoTivity,

▸ Born from the OCF
▸ Open source and distributed under Apache License
▸ First release from 18th December 2015
▸ Provides a standard framework for IoT
IoTivity: a standard, open-source framework for tomorrow’s IoT

Introducing IoTivity

IoTivity: what is it?

Enter IoTivity,

- Born from the OCF
- Open source and distributed under Apache License
- First release from 18th December 2015
- Provides a standard framework for IoT
Global architecture and functions

IoTivity

- comes in two sizes: Rich and Lite devices
- takes care of setup, communications, and security of the network
Global architecture and functions

IoTivity

- comes in two sizes: Rich and Lite devices
- takes care of setup, communications, and security of the network
- can also take care in Rich devices of resources and data management
Global architecture and functions

- IoTivity
 - comes in two sizes: Rich and Lite devices
 - takes care of setup, communications, and security of the network
 - can also take care in Rich devices of resources and data management
Global architecture
Base architecture

<table>
<thead>
<tr>
<th>Component (Base Layer)</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>Multicast Discovery, Device Presence</td>
<td>Discover Resource, check device presence</td>
</tr>
<tr>
<td></td>
<td>Resource Introspection</td>
<td>Resource type/property management</td>
</tr>
<tr>
<td>Messaging</td>
<td>CoAP Messaging</td>
<td>Transmit message between devices</td>
</tr>
<tr>
<td></td>
<td>Message switching</td>
<td>Routing thru hetero-connectivity devices</td>
</tr>
<tr>
<td></td>
<td>Block-wise Transfer</td>
<td>Block data transfer (more than 1KB data)</td>
</tr>
<tr>
<td></td>
<td>Connectivity Abstraction</td>
<td>Wi-Fi, BLE, BT abstraction with CoAP</td>
</tr>
<tr>
<td></td>
<td>Remote Access</td>
<td>Home to out of home device connection</td>
</tr>
<tr>
<td></td>
<td>CoAP over TCP</td>
<td>Reliable Transmission, It can be used for messaging between device and cloud</td>
</tr>
<tr>
<td>Security</td>
<td>DTLS</td>
<td>Secure data channel with encryption</td>
</tr>
<tr>
<td></td>
<td>Security Resource Manager</td>
<td>Access control (CRUD), Key Management</td>
</tr>
<tr>
<td></td>
<td>Security Provisioning Manager</td>
<td>Transmit credential for authentication</td>
</tr>
</tbody>
</table>
IoTivity: a standard, open-source framework for tomorrow’s IoT

Architecture of IoTivity

Service architecture

<table>
<thead>
<tr>
<th>Component (Service Layer)</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Encapsulation</td>
<td>Active Discovery, Broker</td>
<td>Dynamic Resource discovery/monitoring</td>
</tr>
<tr>
<td></td>
<td>Cache, Server Builder</td>
<td>Resource data Pre-fetch with Getter/Setter API</td>
</tr>
<tr>
<td>Resource Container</td>
<td>Bundle Loader</td>
<td>Dynamic loading of Resource server</td>
</tr>
<tr>
<td></td>
<td>Configuration file</td>
<td>Lifecycle configuration of Resource server</td>
</tr>
<tr>
<td>Device Management</td>
<td>Group Manager (Control)</td>
<td>Simultaneously control multiple devices</td>
</tr>
<tr>
<td></td>
<td>Device Configuration</td>
<td>Device initialization and configuration</td>
</tr>
<tr>
<td></td>
<td>Multi-PHY Easy Setup</td>
<td>Network setting with mobile device help</td>
</tr>
<tr>
<td>Low-Power Management</td>
<td>Resource Directory</td>
<td>DNS service for Resource</td>
</tr>
<tr>
<td></td>
<td>Resource Hosting</td>
<td>Delegate resource response to smart device</td>
</tr>
<tr>
<td>Data Management</td>
<td>Soft Sensor</td>
<td>Virtual sensor by sensor data aggregation</td>
</tr>
<tr>
<td></td>
<td>Protocol Bridge</td>
<td>Message translation between different protocol</td>
</tr>
<tr>
<td></td>
<td>Multi Platform Noti. Service</td>
<td>status message transmission (Tizen, Android)</td>
</tr>
</tbody>
</table>
Participation

In addition to OCF members, anyone can contribute by following these steps:

- Building IoTivity
- Respecting coding guidelines
In addition to OCF members, anyone can contribute by following these steps:

- Building IoTivity
- Respecting coding guidelines
- Submitting code to the Gerrit
Participation

In addition to OCF members, anyone can contribute by following these steps:

- Building IoTivity
- Respecting coding guidelines
- Submitting code to the Gerrit
- Keeping up with the documentation requirements
Participation

In addition to OCF members, anyone can contribute by following these steps:

▶ Building IoTivity
▶ Respecting coding guidelines
▶ Submitting code to the Gerrit
▶ Keeping up with the documentation requirements
Future presence

IoTivity might become the widest-spread IoT implementation

- Since its fusion with AllJoyn, OCF is the de-facto standard ruler for IoT
- Open-source implementation and permissive Apache License
Future presence

IoTivity might become the widest-spread IoT implementation

- Since its fusion with AllJoyn, OCF is the de-facto standard ruler for IoT
- Open-source implementation and permissive Apache License
- Strict and high-level standard of implementation
IoTivity: a standard, open-source framework for tomorrow’s IoT

 Perspectives & Evolution

Future presence

IoTivity might become the widest-spread IoT implementation

▶ Since its fusion with AllJoyn, OCF is the de-facto standard ruler for IoT
▶ Open-source implementation and permissive Apache License
▶ Strict and high-level standard of implementation
▶ Adaptability to hardwares, OSes and softwares
Future presence

IoTivity might become the widest-spread IoT implementation

- Since its fusion with AllJoyn, OCF is the de-facto standard ruler for IoT
- Open-source implementation and permissive Apache License
- Strict and high-level standard of implementation
- Adaptability to hardwares, OSes and softwares
Thank you for your attention! Any questions?
Further Reading

- **Introduction, Architecture and HowTos**
 wiki.iotivity.org

- **Markets**
 Markets, Ericsson
 Internet of Things Technology Market Growth Forecasts to 2020’s horizon

- **Open Connectivity Foundation**
 en.wikipedia.org/wiki/OpenConnectivityFoundation