Abdelaziz FOUNAS
Rémi GATTAZ
Marwan HALLAL

£
@

IPOPO

Project report :

Extended services for iPOPO
Python-based component model

|) Introduction
|.1) Context
|.2) Goal of the project

|I) Prototyping

[II) TLS Remote shell and IPOPO Remote Client

|\VV) Private Key Infrastructure
V. 1) Choosing a library
V. 2) Wrappin Openssl
1V.3) Keystore

V) Results

VI) Conclusion

) Introduction
|.1) Context

iPOPO is a Python-based Service-Oriented Component Model (SOCM) based on
Pelix, a dynamic service platform. They are inspired on two popular Java
technologies for the development of long-lived applications: the iPOJO component
model and the OSGi Service Platform.

The development of iPOPO is supported by IsandlaTech, in the context of the thesis
of Thomas Calmant in the ERODS team, at the Laboratoire Informatique de
Grenoble.

Pelix brings the concept of bundles in Python. A bundle is a module with a life cycle.
It can be installed, started, stopped, updated and uninstalled. A bundle can declare a
class acting as a bundle activator using the @BundleActivator decorator. This class
will be instantiated by the framework and its start() and stop() methods will be called
to notify the bundle about its activation and deactivation. When it is active, a bundle
can register services. A service is an object implementing a specification and
associated to a set of properties. A component will then be able to select and
consume a service according to the specification(s) it provides and to its properties.

The components are a concept brought by iPOPO. A component, or component
instance, is an object managed by a container. The container handles the
interactions between the component and the Pelix framework. That way, the
component contains only the code required for its task, not for its bindings with the
framework. A component is an instance of a component factory, a class manipulated
by iPOPO decorators.

|.2) Goal of the project

In IPOPO exists a component called “Remote shell”. Its activation in an application
allow users to remotely connect to an the IPOPO shell and therefore manage the
application. Using the remote shell, it is possible namely possible to install bundles,
start components and stop components.

The connection to this shell is however clear. Using simple tcp sockets, anyone
listening to the connection can see what is transmitting between the server and the
client. Moreover, any user can connect to this shell as now password is required.
The goal of this project is to create a TLS version of the remote shell. This
component will then allow the authentication of users and encrypt every messages
exchanged between the client and the IPOPO application. This encryption will then
allows the implementation of several commands in the shell. For example the upload
and download of file. Not authorized as of today for security reasons.

II) Prototyping

When we started this project, we knew we would need to design and implement
three components in IPOPO. A component to create a TLS Remote shell, a
component to handle a set of certificates and a component to add certificate
generation commands to the IPOPO shell. Among these three components, it was
decided that we would start by the TLS Remote shell.

The reason behind that choice was simple. The component to add commands in
IPOPO can not be created before the certificate handling one. And at that point, we
didn’t know for sure what this component needed to do as we didn’t know what the
TLS remote shell would require. Doing a prototype of this component was a good
way to find out. It also allowed us to understand the way IPOPO works a bit better
before trying to write more complicated components for the framework.

Designing this component and implementing it took us nearly 4 weeks which was a
lot longer than we first expected. The main reason behind this length is that we had
to learn how to use python at the same. Still, the design we made for the prototype
was good so the exact same design will be used for the component that will be in the
delivered version of the project.

The prototype was presented during the mid-presentation of the project and is a fully
working TLS version of the remote shell.

PV T v - Ty o (P ey [e g T - i PRy gy o

......... APl e e e e ey s A B S e G e S e e e e s R e e
) -

..... 0-1.0...0....FR1.0...0....Dromel.0...0....Grencblel.0...O.

. « IPOPO1

0...U....head1.0...0....www.jean.coml.0...*.H..

we--=-Z8f.coml..

1602151326132,

26021213261320.1.0...0....FR1.0...0....Dromel.0...0U....Grenchlel.0...0.

« « IPOPO1

Ouealawechoadl 0. ...
www.ipopo.coml.0...*.H..
e Ee d B T

Ty e o P e Davc..3

[omeninae [i -
«+:.88L Server Certificate0...U.......0...2..0...#1I"..2.
R o e e e e T e e e 0..1.0...0....FR1.0...0....Dromel.0...0....Grenoblel.0...0.
.« IPOPO1.0
ealen..R&D1.0...0...
www.ipopo.coml.0...*.H..
..... ipopoRipopO.COMe v v s e ZosaheleseUarua0.0-0.Tou &0
$..WWW.BEerver.com. .webmail.server.comd. .. U.s.nnas i S P e e e [
..t.é:.‘.‘
........... I=~T.TP.K7 .New e Ba [eCeaTanunnnnsl

«M. S e A e e Ao P S P et e 1-EgB.)-B.-".-)-1-5g..-D..>.1. . 5Rd. k.| -u..0.-8..B.]-

S el e d e e e e S R T e e el b e e e e el e el e e e B e
e e e S S

o BPRT, 75 {5 (P P e =l N RN R e M.

Fid&re 1 Network c}ap_z‘bre_ of a TLS remote shell Iﬁn‘e_ss'age_

lIl) TLS Remote shell and IPOPO Remote Client

A component “remote shell” already exists in IPOPO. Therefore, it was not needed to
write a lot of code to implement the TLS version of the remote shell. By extending
the current remote shell and overriding a few methods, we were able to create the
TLS remote shell. The design we used can be found in the “Annexe A : Simplified
Class Diagram of TLS Remote”.

Because we extend existing classes, our implementation of the TLS remote shell is
very similar to the remote shell already in IPOPO. Itis a TCP server, waiting for new
connections and creating a thread for every new client. Each clients connecting to
the IPOPO application are given a pelix shell and gain access to a prompt. Using
that shell, it is then possible to run commands on the ipopo application. The only
major difference between the remote shell implementation and our TLS remote shell
is that we are using ssl wrapped sockets rather than simple sockets. Therefore,
every messages between the client and the IPOPO application are encrypted.

To reduce as much as possible repetition of code, we however had to slightly
change the implementation of the component IPOPO remote shell. A decision
approved by our tutor.

To connect to the IPOPO remote shell, users could use any tcp client. Using netcat
and telnet were both viable options. With our tls version, they however weren’t
anymore. As the tcp sockets are ssl wrapped, classic tcp clients can not be used to
connect to the TLS remote shell. Therefore, at the same time we were writting the
TLS remote shell component, we were writing an application called “IPOPO Remote
Client”. Written in python as well, this application can be used to connect to the
IPOPO Remote shell or the TLS remote shell.

./client.py

ADDRESS : 'localhost'
PORT : 9001
GLES ¢ Ticue

*% Pelix Shell prompt *x

iPOPO Remote Shell

Figure 2 : IPOPO Remote Client

V) Private Key Infrastructure

I\VV. 1) Choosing a library

The choice of an encryption library was necessary to advance the project. After
doing some research of available solutions, we found two possible candidates:

e ssl: a python core module that is compatible with python 2 and 3.

e pyOpenSSL : a third-party wrapper of the OpenSSL crypto library.

The major limitation of ssl is that it doesn’t handle in-memory storage of keys and
certificates (keystores). A simple solution would be to use the pyjks module which
provides keystore support. But this module is still in alpha and only supports
python3. That's why we chose pyOpenSSL that has the inconvenient of adding a
dependency to IPOPO.

V. 2) Wrapping pyOpenssl

We decided to expose the features of pyOpenSSL through a set of wrapping
modules. The idea behind this choice was to allow the future replacement of the
library with another without affecting the rest of the application.

There are 4 wrapper modules:
- Key represents a pair of cryptographic keys (a private and a public key).
- Certificate is a wrapper of an X509 certificate
- CSR s a certificate signing request
- Entity is an organisation that uses a certificate; It can be either the issuer or
the subject

These modules provide a public interface that is completely independent of the
underlying logic. finally , the PKI module uses these wrappers to handle certificate
authorities, including adding and revoking of certificates.

IVV.3) Keystore

The interface KeyStore defines the needed methods to manage a KeyStore. A
KeyStore manages Certificates and is configured from a path on the disk. It should
give several primitives concerning the insertion, retrieval and removal of a Certificate
and the dump and load of persistently saved KeyStore. Moreover, we need to

BasicKeyStore is the implementation of the latter interface. It defines how to manage
a BasicKeyStore. Basically, it keeps the certificates in a dictionary and it dumps them
on disk - thanks to the Pickle package - to save them persistently. It gives primitives
to load a BasicKeyStore saved on disk.

V) Results

We had the time to do the prototype of a TLS client and the TLS secured remote
shell. This prototype is working properly. A test with the Wireshark, a software
capable of listening to network messages, shows a well-encrypted connection
between the client and the remote shell.

We have also done the design and implementation of 6 different modules :
- Key
- Certificate
- CSR
- Entity
- KeyStore
- PKI

The goal of these modules was mainly to have an abstraction to handle certificates
that could be used for the TLS remote shell. All of them have been tested by unit
tests, and by the integration tests provided by TRAVIS.

But we are missing several points to complete the project. First, we did not manage
to make the integration of our new modules in iPOPO itself. Since we didn’'t do a
component allowing the usage of PKI in the IPOPO shell, we cannot use the new
functionalities in the iPOPO shell. It also involves the fact that the TLS remote shell
component is still in its prototype state using static variables.

Also, it was first thought that we could have the time to design an access control
solution for the remote shell. The goal here was to prevent or allow the use of certain

commands in the remote shell to specific users. But this objective has not been
reached. But when the project will be finished, the implementation of such a
functionality would be very useful for security issues.

VI) Conclusion

As stated in the previous part, we haven’t reached our objectives. But since finishing
this project is important, we are going to keep working on it to complete it.
Furthermore, since the beginning of the project, a lab has approached Thomas
CALMANT, the main developer of IPOPO, and asked for the inclusion of more
security into IPOPO. This fact makes completing this project even more important
than it already was.

So even though this project is still in an unfinished state, we will deliver everything
we produced and provide all the help we can to Thomas CALMAN to finish this
project.

Annexe A : Simplified Class Diagram of TLS Remote

llpusaowayodod| S1L

|lpysarowayodod|

ajosuojajoway

Aweqianasd L bulpeaiyl

ajowal
«B|NPOLL»

Alwedianasdolbulpeaiyl s11

ajowaisp
«a|nNpoLLs

lanlasdal s1L

.

Janasdolbuipeaayl

V

uppwBuipeany

13NIDSIANI0S
«a|NpoLL»

V

1an13sdaL

