Open DynDNS Lionel BOEY, Tianming GUO

POLYTECH
GRENOBLE

Open DynDNS

o

Lionel BOEY, Tianming GUO

RICM 4, March April, 2013

Open DynDNS Lionel BOEY, Tianming GUO

Outline

1. Context
1.1 DNS
1.2 Dynamic DNS
2. Project OpenDynDNS
2.1 Introduction
2.2 Tools
2.2.1 Python 2.7
2.2.2 FLASK-RESTful (Web frameworks)
2.2.3 HTTPS and Basic Authentication
2.2.4 PyZeroconf and multicast DNS
2.2.5 Kivy & Python-for-Android
3. Public version
3.1 Concept & target audience
3.2 Technologies involved
3.2.1 Security
3.2.2 REST-ful server
3.3 Topology
4. Local version
4.1 Introduction
4.2.1 Flask, HTTPS, and basic authentification
4.2.2 Pyzeroconf and mDNS
4.3 Topology
5. Conclusion
5.1 Advantages and disadvantages
5.1.1 Advantages:
5.1.2 Disadvantages:
5.2 Conclusion
6. Bibliography and appendix
6.1 Bibliography
6.2 Appendix

Open DynDNS Lionel BOEY, Tianming GUO

1. Context

1.1 DNS

Domain Name System (or more commonly DNS) translates Internet domain and host names to IP
addresses. DNS automatically converts the names typed in the Web browser address bar to the IP
addresses of Web servers hosting those sites.

DNS implements a distributed database to store this name and address information for all public
hosts on the Internet. DNS assumes IP addresses do not change (are statically assigned rather than

dynamically assigned).

1.2 Dynamic DNS

Dynamic DNS (DDNS) is a service that maps Internet domain names to dynamic IP addresses.
DDNS serves a similar purpose to DNS: DDNS allows anyone hosting a Web or FTP server to advertise
a public name to prospective users.

Unlike DNS that only works with static IP addresses, DDNS is designed to support frequenly
changing IP addresses, such as those assigned by a DHCP server or ISPs. That makes DDNS a good fit
for home internet subscription, which often receive dynamic public IP addresses from their Internet
provider.

In general, to use DDNS, one simply signs up with a DDNS provider and installs network
software on their host to monitor its [P address. For example, dyndns.com provides a free dynamic DDNS
service via software that can run on Windows, Mac or Linux computers. (Discontinued on the 7th April

2014)

2. Project OpenDynDNS

2.1 Introduction

OpenDynDNS is an open source project based on the python programming language, its objective
is to create a new open source DDNS solution while ensuring reliability and security in every aspect. This
project was developed in Linux and can be applied for all Python supported operating systems. There are

two different versions for OpenDynDNS, one is used for public networks and another is for local network.

Open DynDNS Lionel BOEY, Tianming GUO

2.2 Tools

2.2.1 Python 2.7

The Python programming language is actively used by many people, both in industry and academia
for a wide variety of purposes. It powers the web apps for Instagram, Pinterest and Rdio through its
associated web framework like Django, FLASK, and is used by Google, Yahoo! and NASA. Since there
are still a lot of web frameworks do not support Python 3.x, Python 2.7 is this project's development

environment.

2.2.2 FLASK-RESTful (Web frameworks)

Flask is a very light web framework written in python that allows provides a wide range of web
server modules such as REST database, session management, Signals management, WSGI (web server
gateway interface) and so on. In comparison to other more powerful web servers such as Django and
Apache, Flask is actually more flexible as we choose whatever modules we need to build our own project.
In this project, we only use the REST-ful modules of the webserver.

REpresentational State Transfer (REST) is a simple stateless data transfer architecture that runs
on HTTP to transfer and store informations in a database. The database is built using formats such as
XML or JSON(used in our project) and communications are made by HTTP requests such GET, PUT,
POST and DELETE.

JSON /REST /HTTP

Client

[{"eity": "Paris", "units™: "C"}]

T Reqe

HTTP POST JSON /service/weather

e
(REST Interface)

[{"low": "186", "high": "23"}]

Server

Figure 1 : An example of a REST communication

Open DynDNS Lionel BOEY, Tianming GUO

2.2.3 HTTPS and Basic Authentication

HTTPS is a basically a regular HTTP protocol implemented on top of a SSL/TLS cryptographic
protocols that ensures information sent securely over the network. In our project, we enhanced the
security and identity of the users with HTTPS connection and HTTP Basic Authentification, which means

users will need to identify themselves with a login and a password.

2.2.4 PyZeroconf and multicast DNS

PyZeroconf is a module written in python by Paul Scott-Murphy that allows the implementation of
a DNS cache and a multicast DNS (mDNS) network.

To put it simply, mDNS is a zero-configuration service that allows hosts to rapidly resolve host
names of other users in a private network without a nameserver. When a needs to resolve a hostname

xyz”, it sends an IP multicast query message to the group and the target machine “xyz will send a

multicast reply. All the hosts in the group will use this information to update their respective DNS cache.

2.2.5 Kivy & Python-for-Android

Kivy is an open source Python library for rapid development of mobile applications that make use
of innovative user interfaces, such as multi-touch apps. A simple DDNS client was realised for Android by

using kivy and Python-for-Android.

3. Public version

3.1 Concept & target audience

The public version is meant to be used in public networks (Starbucks, airport and other non-trusted
network). When a service host such as a web server frequently finds itself in differents networks (hence

different public IP addresses), users of this service must be able to find it by consulting the DNS server.

e Host: Check the change of its public ip address every 30 seconds, once the ip address is changed,
an update will be sent to the REST server.
e REST: Receives REST updates and verify if the information is correct (id, hostname, record type

etc)

Open DynDNS Lionel BOEY, Tianming GUO

o correct updates will return a 20X status code to the host, then update REST itself and the
DNS server.

o unsuccesful updates will return a 40X status code and the update will be ignored.

Target audience for this version will include :

e Hosts who would like to provide services such as web server, mail server, file sharing services
and many more but finds themselves constantly changing public IP address.

e Network administrators and developpers looking to study new technologies such as UPnP

3.2 Technologies involved

3.2.1 Security

e As previously mentioned, the public version is applied to non-trusted public network, all kinds of
“normal” updates are unsafe for DNS server, so when the client wants to send an update, an
authentication (username & password) and a Secure Sockets Layer(SSL) are necessary in order
to successfully update the DNS information. In Flask, basic authentification is easily done by
adding just a “@requires_auth” header before any class or method we would like to protect. In
our project, we use the SSL feature in Flask by loading a self-generated SSL certificat (refer to
Appendix). Users can subscribe for a paid certificat from a certificat authority such as

godaddy.com or http://ssl.comodo.com/.

3.2.2 REST-ful server

e This server implemented by Flask serves as the gateway to the actual DNS server. Below is an

small extract of the server code where HTTP requests are processed :

A single host item
we can GET, DELETE, or PUT a single host item
class Host(Resource):

@requires_auth

Open DynDNS Lionel BOEY, Tianming GUO

def get(self, host_id):
abort_if host doesnt exist(host id)
return HOSTS[host id]

@requires_auth

def delete(self, host_id):

abort if host doesnt exist(host id)

del HOSTS[host id]

zonefilemgr.deleteHost(my zone file, host_id)

//SIGHUP is sent to the bind process to reload configurations files
zonefilemgr.signalProc('named')

return ", 204

@requires_auth

def put(self, host id):

abort if host doesnt exist(host id)
// a parser to obtain arguments from HTTP requests

args = parser.parse_args()

host = HOSTS[host id]

old ip = host['ip']

new_ip = args['ip']

rectype = args['rectype']

/lupdates REST dictionary

modified host = modifyDict(host id,new_ip,rectype)

//updates bind zone files

zonefilemgr.updateHostIP(host id, my zone file, new_ip, rectype)
//SIGHUP is sent to the bind process to reload configurations files
zonefilemgr.signalProc('named")

return modified host, 201

We have created a module called “zonefilemgr.py” that provides functions to manage DNS zone
files (modification, information retrieval, process signal etc).

REST contains an identical list of DNS records stored in a JSON dictionary, the list is available
after REST was launched. One or all the hosts information can be checked with a browser by

https://127.0.0.1:5000/hosts/<host_id>. Once an update is completed, the new list status can be

checked by refreshing the webpage. This dictionary is easily parsable by any JSON parser.

https://www.google.com/url?q=https%3A%2F%2F127.0.0.1%3A5000%2Fhosts%2Fhosts%2F&sa=D&sntz=1&usg=AFQjCNHg6ItA2mAJ_IcWL_IUxp-5q2-usA
https://www.google.com/url?q=https%3A%2F%2F127.0.0.1%3A5000%2Fhosts%2Fhosts%2F%253chost_id&sa=D&sntz=1&usg=AFQjCNHxoySEDU4h-jTknig8rCXNm6OjtQ

Open DynDNS Lionel BOEY, Tianming GUO

{
"hostl": {
"ip": "130.198.55.6",
"rectype": "A"
||r|5||: _[
"ip": "11.11.11.11",
"rectype": "A"
}

Figure 2 : An example of the JSON dictionary

3.3 Topology

3.
i 1. DDNS client : get public ip address a.b.c.d
DNS_Sepver
4 2. DDNS client : send an update to REST
3. REST : check the information of update
S-E; tiger 4. REST a DNS _server : <ddns_client @ a.b.c.d>
\ - = 5. DNS_server : update the zone file
Rouler
2. 6. User a DNS_server : where is ddns.testopendyn.com?
‘1/ = 7. DNS_Server a User : <ddns_client @ a.b.c.d>
Internet
DDNS_CIi’ent

Figure 3 : Topology of public version

Open DynDNS Lionel BOEY, Tianming GUO

4. L.ocal version

4.1 Introduction

When a machine arrives on the local network of a company or a university, it would want to

discover all the available services it can use such as web services, file hosting services, printing services
and many more. In addition to being visible and accesible on the network by name, the machine would also

like to resolve other host names on the network.

e Newly-arrived hosts make use of the mDNS to annouce their presence and also discover the real
DNS server on the network. Resolv.conf will be updated

e DNS server will also be updated with the presence of the new host.

e The new host are able to access all the services on the network.

e Other users will be able to acces the service announced by the new host.

e The departure of the host will eventually trigger the deletion of the DNS record, thereby realising

a network with rapid convergence.

Target audience for this version will include networks with dynamic hosts and clients (different machines
that come and go frequently) :
- Small to medium sized companies or research labs

- Schools and universities

4.2 Technologies involved

4.2.1 Flask, HTTPS, and basic authentification

e These 3 components are reused in the network (refer to explication in the public version)

e The only difference is that the DNS server now accepts updates on LOCAL IP addresses.

Open DynDNS Lionel BOEY, Tianming GUO

4.2.2 Pyzeroconf and mDNS

e We have studied and made use of the modules provided by the Pyzeroconf project, which can be
downloaded and distributed freely on https://github.com/paulsm/pyzeroconf
e To listen to services on an mDNS network, we use a ServiceBrowser coupled with a Zeroconf

object. Here is a small extract of the code used :

#search for real DNS server by mDNS
try:
find type="_dns. udp.local."
// creates a Zeroconf object on all the address on this machine
zc = Zeroconf('0.0.0.0")
//initialise a service listener
listener = MyListener(zc)
//initialise a DNS service browser
browser = ServiceBrowser(zc , find_type, listener)
serv_ip = listener.getServAddress()
test=0
//loop while browsing for DNS services
while(not serv_ip and test<5):
time.sleep(1)
serv_ip = listener.getServAddress()
test += test
print('Local IP of DNS server :'+ serv_ip)
#update nameserver
addNameserver('/run/resolvconf/resolv.conf',serv_ip,'testopendyn.com')
except Exception as err:
print('Error in search for DNS server on the network'")
sys.exit(0)

e When registering a client for the first time on the mDNS network, it must first probe for a usable
name and annouce a Servicelnfo which contains information about the client such as client type,
full FQDN name, ip address, socket and properties. Here is an extract of the code registering a

client :

#register client service and nameprobe on mDNS
try:
zc = Zeroconf('0.0.0.0"
full name = '%s.%s'%(base_name.split('.")[0], client type)
print(full name)
s = Servicelnfo(
client_type,

10

Open DynDNS

Lionel BOEY, Tianming GUO

)

except:

full name, # FQDN mDNS name of server

server = base name,

address = socket.inet_aton(client _ip),

port = client_port,

properties = {"hello":"world", "dept":"ricm"}, # Setting DNS TXT records...

we register/unregister twice to prevent name conflicts by numbering client name
zc.registerService(s)
client_ name = zc.probeName(base_name)
print(client_name)
zc.unregisterService(s)
print 'Negotiated name:', client name
s.server = client name
zc.checkService(s)
zc.registerService(s)

print("Error in name registration")
zc.close()
sys.exit(0)

4.3 Topology

i X

DNS_server
| 5.

REST & mNS_server

mDNS_Client1

mDNS_Client2

mDNS_Printer

[
mONS_HTTE

1. clientl : member of group mDNS : I am “client]”. Who is
DNS server?

2. mdns_server : member of group mDNS : [am DNS server
3. client] : update resolv.conf

4. clientl to REST : this is my local IP address a.b.c.d

5. REST : check the information

6. REST to DNS_server : <clientl @ a.b.c.d>

7. DNS_server : update the zone file

Figure 4 : Topology of local version

11

Open DynDNS Lionel BOEY, Tianming GUO

5. Conclusion

5.1 Advantages and disadvantages

5.1.1 Advantages:

e Multi-platform
o Since most of our projet is developped in Python, its can be run on any machine supporting
the Python language
e [FEasy to use
o After initial configurations, clients have nothing to do for the effects of DDNS to take
place. When we have a confirmed use case and a stable mdns_client daemon, we could
implement a more ergonomic mobile interface with Kivy.
e High flexibility and scalability
o Our solutions provide the initial backbone for a DDNS network. Developpers can use
them to implement different use cases according to their needs. For example the REST
server can be transformed into a fully fledged web server such as remote domain and
session management as it has the same database as the DNS server.
e [f UPnP libraries and modules are finally developped and usable, hosts in the public version will be
fully functional and accesible and hosts in the local version would be visible just by name from the

exterior.

5.1.2 Disadvantages:

e UPnP libraries are very complicated and not yet extensively developped.

o UPnP is a very complex protocol which involves many unstable and unsecure
technologies (not just mDNS). We have tried searching for references on the internet but
we only found a few half-finished projects.

e Python 3.x are not yet fully backward compatible with Python 2.x
o Some basic functions and formats have changed in the newer version and we would have

to do some translation work for our project to be used on Python 3.0

12

Open DynDNS Lionel BOEY, Tianming GUO

5.2 Conclusion

We can see that our preliminary version of Open DynDNS is more or less functional for real
world application. However, it lacks more sophisticated features that many paid DDNS service provider
offers to their clients. For future development, we could start looking into possible solutions or alternatives
to UPnP which would remove the boundries between networks for all our trusted components. Also, the
transition from IPv4 to I[Pv6 can be done and it should not be complicated.

We had faced with some difficulties during the project, such as weird bugs and we had to study
very long and complicated guides on the technologies used. However, we really enjoyed this project as it
has given us the opportunity to discover many useful tools and technologies. It also helps us familiarise

with one of the most popular programming language in the world which is Python.

6. Bibliography and appendix

6.1 Bibliography
Flask
http://flask-restful.readthedocs.org/en/latest/

Pyzeroconf

https://github.com/paulsm/pyvzeroconf

SSL certificat generation

www.akadia.com/services/ssh_test_certificate.html

Network diagnostic tools

http://www.whatsmyip.org/

Debugging and ideas

http://stackoverflow.com/

Wikipedia (concepts and definitions)

https://fr.wikipedia.org/

13

http://www.google.com/url?q=http%3A%2F%2Fflask-restful.readthedocs.org%2Fen%2Flatest%2F&sa=D&sntz=1&usg=AFQjCNEPg17R6xZfRgcmMu7-HLEUI21hBg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fpaulsm%2Fpyzeroconf&sa=D&sntz=1&usg=AFQjCNHFf36-3zh-EMtuat2W4XHIfjK-CA
http://www.google.com/url?q=http%3A%2F%2Fwww.akadia.com%2Fservices%2Fssh_test_certificate.html&sa=D&sntz=1&usg=AFQjCNGCWdh62y_aWYdMI1a2payd_E-odg
http://www.google.com/url?q=http%3A%2F%2Fwww.whatsmyip.org%2F&sa=D&sntz=1&usg=AFQjCNFXrV-KNsy36oP9zW6bxwGsQak5jA
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2F&sa=D&sntz=1&usg=AFQjCNEc58ufm1d4pfZDS_teRkt55LoC8g
https://www.google.com/url?q=https%3A%2F%2Ffr.wikipedia.org%2F&sa=D&sntz=1&usg=AFQjCNEsdeaTS6qZL1B0_DvPPIvVa9woIg

Open DynDNS Lionel BOEY, Tianming GUO

6.2 Appendix

e Full project is available on GitHub
o https://github.com/umpriS450/Open_DynDNS

O tutorial on how to start using

o our project is entirely open-source and free to distribute

***Self-signed SSL certificat and key

Step 1: Generate a Private Key
$ openssl genrsa -des3 -out server.key 1024

Step 2: Generate a CSR (Certificate Signing Request)
$ openssl req -new -key server.key -out server.csr
- fill in fields as you wish

Step 3: Remove Passphrase from Key
$ cp server.key server.key.org
$ openssl rsa -in server.key.org -out server.key

Step 4: Generating a Self-Signed Certificate
$ openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Step 5: Usage
- you now have a "server.key" and a "server.crt" that can be used in you SSL applications

NOTES :
To test a webserver SSL(certificates):
openssl s_client -connect 127.0.0.1:5000
openssl s_client -port 5000 -CApath /usr/share/ssl/certs/ -host 127.0.0.1 -prexit

$ sudo apt-get install bind9
Bind9 zonefile configurations
Install and set-up bind9 according to norme (guides and tutorials available online!)

Located in /etc/bind
Declare zone and reverse zone in ""named.conf.local"

zone "testopendyn.com" {
type master;

14

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fumpri5450%2FOpen_DynDNS&sa=D&sntz=1&usg=AFQjCNEtlO53G1UQ48sz6DCkacdHyNv8Yg

Open DynDNS Lionel BOEY, Tianming GUO

file "/etc/bind/db.testopendyn.com'';
1

zone "'33.33.33.in-addr.arpa" {
type master;
notify no;
file "/etc/bind/db.33";

}5

Create zone file ""db.<domain_name>"
- WARNING!! : wrap A record types with marker ";hostlist" and ";endhostlist"
- give DNS server an address

Create reverse zone file "db.33"

Check configurations files
$ named-checkconf -z

Restart bind server
$ sudo /etc/init.d/bind9 restart

15

