
Modifying a kernel for Bossa : an example with
Linux kernel 2.6.32

Florian David
Pierre et Marie Curie University

4 place Jussieu, 75005 Paris, France
http://bossa.lip6.fr/

February 27, 2011

1

Contents
1 Introduction 3

2 Prerequisites 4
2.1 Kernel configuration . 4
2.2 Description of the Bossa runtime . 4
2.3 Bossa kernel and Makefile configuration 4

3 Disabling the Linux scheduler 6
3.1 Enqueue task() and dequeue task() 6
3.2 Wake up new task . 7
3.3 Scheduler tick . 8
3.4 Rt mutex setprio . 9
3.5 sched setscheduler . 10
3.6 Normalize task and normalize rt tasks 10
3.7 Pick next task and put prev task . 11

4 Kernel source modification 13
4.1 Bossa events . 13
4.2 Sched.h header . 13
4.3 Bossa init . 14
4.4 Rts clocktick . 14
4.5 Rts create process . 14
4.6 Rts terminate process . 15
4.7 Rts unblock preemptive and Rts unblock nonpreemptive 16
4.8 Rts set priority . 17
4.9 Rts yield . 17
4.10 Rts schedule . 18

2

1 Introduction
Bossa is a kernel-level event-based framework that simplifies implementation of new

schedulers for the Linux kernel. Bossa provides a domain-specific language that helps
to implement new scheduling policies.

To support Bossa, a version of Linux must initially be modified to disable the existing
scheduling support and to implement the Bossa event notifications. The specific modi-
fications required may vary across the different Linux versions, as the Linux scheduling
mechanisms evolve. This is a task for an OS expert.

The aim of this document is to describe the modifications made to version 2.6.32
of the Linux kernel to support Bossa. The strategies used may be applicable to future
versions of the Linux kernel.

3

2 Prerequisites

2.1 Kernel configuration
The Bossa kernel is compatible with most of the available kernel modules and con-

figuration options, but we need to disable three options:

• CONFIG SMP: located under Processor type and features→ Symmetric multi-
processing support.

• CONFIG GROUP SCHED: located under General setup→ Group CPU sched-
uler.

• CONFIG HIGH RES TIMERS: located under Processor type and features →
High Resolution Timer Support.

2.2 Description of the Bossa runtime
We must first copy the files of the Bossa runtime into the kernel source tree. These

files are as follows:

• include/linux/bossa event headers.h

• include/linux/bossa events.h

• include/linux/bossa.h

• include/linux/bossa policy rts.h

• include/linux/bossa rts.h

• include/linux/bossa rts kernel.h

• kernel/bossa/Kconfig

• kernel/bossa/sched.c

• kernel/bossa.c

• kernel/Linux.c

• kernel/prim.c

• kernel/prim1.c

2.3 Bossa kernel and Makefile configuration
The Linux kernel configuration tool needs to know where to find the file that contains

the Bossa configuration options. This can be done by opening the arch/your arch/Kconfig
file and adding the following line: source ”kernel/bossa/Kconfig”. Bossa options will
now appear in the configuration menu. Note that it is better to modify the architec-
ture specific Kconfig because the position of the call to rts clocktick() depends on the
computer architecture (cf. Section 4.4).

4

The Makefile must also know which files to compile when Bossa is enabled. There
are only kernel/Linux.c and kernel/bossa.c to compile. The following lines must be
added to kernel/Makefile in order to compile these two files.

1 obj−$ (CONFIG BOSSA) += b o s s a . o
2 obj−$ (CONFIG BOSSA) += Linux . o

5

3 Disabling the Linux scheduler
Linux’s CFS (Completely Fair Scheduler) does all the scheduling management, such

as choosing the next elected process, deciding whether to wake up a task preemptively,
etc. Removing function calls related to the CFS is thus essential to prevent it from
interfering with the behaviour of Bossa.

All of the calls to the CFS are performed by the process’s scheduling class (field
sched class of the task struct structure). Each call to a function from the sched class
structure has to be removed and potentially be replaced by a Bossa function. Bossa
must also be the only one to ask for reschedule, so any function that tries to set the
resched flag, for example, by calling functions set tsk need resched(struct task struct*)
or resched task(struct task struct*) should also be removed.

We can remove functions by two equivalent methods: suppressing the whole defini-
tion or removing only the function body. Removing the function body is easier when
the function is available in a header file and can potentially be used anywhere in the
kernel. In that way, we do not need to remove every call to the function in the kernel.

The whole definition can be deleted if the use of the function is limited to the scope
of a single file. In this case, we have to delete each call to this function in this file.
We use this solution for clarity and to ensure that the functions are not called anymore.
Preprocessing directives (#ifdef CONFIG BOSSA) are used for both purpose.

All functions described in this section are located in the kernel/sched.c file.

3.1 Enqueue task() and dequeue task()
When a task enters in a runnable state, the scheduler calls the function enqueue task(struct

rq *, struct task struct *, int), which puts the task into the runnable-task structure of the
scheduler. The function dequeue task(struct rq *, struct task struct *, int) then takes
the task out of the structure when the task is no longer runnable. Since Bossa decides
which task should be in a runnable state and maintains its own data structures, these
two functions must not be called.

#ifndef CONFIG BOSSA
static void enqueue task(struct rq *rq, struct task struct *p, int wakeup) {

if (wakeup)
p−>se.start runtime = p−>se.sum exec runtime;

sched info queued(p);
p−>sched class−>enqueue task(rq, p, wakeup);
p−>se.on rq = 1;
}

10
static void dequeue task(struct rq *rq, struct task struct *p, int sleep) {

if (sleep) {
if (p−>se.last wakeup) {

update avg(&p−>se.avg overlap,
p−>se.sum exec runtime − p−>se.last wakeup);

p−>se.last wakeup = 0;
} else {

update avg(&p−>se.avg wakeup,

6

sysctl sched wakeup granularity);
} 20
}

sched info dequeued(p);
p−>sched class−>dequeue task(rq, p, sleep);
p−>se.on rq = 0;
}
#endif

Because the functions activate task(struct rq *, struct task struct *, int) and deac-
tivate task(struct rq *, struct task struct *, int) make an call to enqueue task and de-
queue task; they must also be removed.

#ifndef CONFIG BOSSA
/*
* activate task - move a task to the runqueue.
*/

static void activate task(struct rq *rq, struct task struct *p, int wakeup) {
if (task contributes to load(p))

rq−>nr uninterruptible−−;

enqueue task(rq, p, wakeup);
inc nr running(rq); 10

}

/*
* deactivate task - remove a task from the runqueue.
*/

static void deactivate task(struct rq *rq, struct task struct *p, int sleep) {
if (task contributes to load(p))

rq−>nr uninterruptible++;

dequeue task(rq, p, sleep); 20
dec nr running(rq);

}
#endif

3.2 Wake up new task
The function wake up new task(struct task struct *, unsigned long) is called just

after a process has forked. It puts the task into the runnable-task structure (with acti-
vate task()), notifies the scheduler that a new task has been created (with task new()
from the process’s scheduling class) and checks if the newly created task should pre-
empt the current one (with check preempt curr() function). All of these operations
involve the Linux scheduler and they must not be called.

/*
* wake up new task - wake up a newly created task for the first time.
*
* This function will do some initial scheduler statistics housekeeping
* that must be done for every newly created context, then puts the task
* on the runqueue and wakes it.
*/
#ifndef CONFIG BOSSA
void wake up new task(struct task struct *p, unsigned long clone flags) {

7

unsigned long flags; 10
struct rq *rq;

rq = task rq lock(p, &flags);
BUG ON(p−>state != TASK RUNNING);
update rq clock(rq);

if (!p−>sched class−>task new | | !current−>se.on rq) {
activate task(rq, p, 0);
} else {

/* 20
* Let the scheduling class do new task startup
* management (if any):
*/

p−>sched class−>task new(rq, p);
inc nr running(rq);
}
trace sched wakeup new(rq, p, 1);
check preempt curr(rq, p, WF FORK);

#ifdef CONFIG SMP
if (p−>sched class−>task wake up) 30

p−>sched class−>task wake up(rq, p);
#endif

task rq unlock(rq, &flags);
}
#endif

3.3 Scheduler tick
The scheduler tick() function is indirectly called by time interrupt handler to manage

the system scheduling. This function might lead to a context switch by calling the
task tick() function from the process’s scheduling class. Consequently, the function
scheduler tick() must be disabled.

/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*
* It also gets called by the fork code, when changing the parent’s
* timeslices.
*/

void scheduler tick(void) {
#ifndef CONFIG BOSSA

int cpu = smp processor id(); 10
struct rq *rq = cpu rq(cpu);
struct task struct *curr = rq−>curr;

sched clock tick();

spin lock(&rq−>lock);
update rq clock(rq);
update cpu load(rq);
curr−>sched class−>task tick(rq, curr, 0);
spin unlock(&rq−>lock); 20

perf event task tick(curr, cpu);

#ifdef CONFIG SMP
rq−>idle at tick = idle cpu(cpu);

8

trigger load balance(rq, cpu);
#endif
#endif
}

3.4 Rt mutex setprio
The function rt mutex setprio(struct task struct *, int) is used by real-time mutex

code in order to implement priority inheritance. It can temporarily increase the priority
of a lower priority process when that process holds a locks that is needed by the current
task.

This function makes calls to functions from the scheduling class of the task (put prev task()
and set curr task()) and to functions that have been previously removed (enqueue task()
and dequeue task()). Moreover, only Bossa can manage a task’s priority so this func-
tion must be disabled.

/*
* rt mutex setprio - set the current priority of a task
* p: task
* prio: prio value (kernel-internal form)
*
* This function changes the ’effective’ priority of a task. It does
* not touch ->normal prio like setscheduler().
*
* Used by the rt mutex code to implement priority inheritance logic.
*/ 10

void rt mutex setprio(struct task struct *p, int prio) {
#ifndef CONFIG BOSSA

unsigned long flags;
int oldprio, on rq, running;
struct rq *rq;
const struct sched class *prev class;

BUG ON(prio < 0 | | prio > MAX PRIO);

rq = task rq lock(p, &flags); 20
update rq clock(rq);

oldprio = p−>prio;
prev class = p−>sched class;
on rq = p−>se.on rq;
running = task current(rq, p);
if (on rq)

dequeue task(rq, p, 0);
if (running)

p−>sched class−>put prev task(rq, p); 30

if (rt prio(prio))
p−>sched class = &rt sched class;

else
p−>sched class = &fair sched class;

p−>prio = prio;

if (running)
p−>sched class−>set curr task(rq); 40

if (on rq) {

9

enqueue task(rq, p, 0);

check class changed(rq, p, prev class, oldprio, running);
}
task rq unlock(rq, &flags);

#endif
}

3.5 sched setscheduler
The function sched setscheduler(struct task struct *, int, struct sched param *,

bool) is used by sched setscheduler() and sched scheduler nocheck() for modifying
the scheduling class of a process. This function is irrelevant when using Bossa be-
cause Bossa does not use the scheduling class. Moreover, it calls many functions of the
previous and new scheduling class of the process which can interfere with Bossa.

static int sched setscheduler(struct task struct *p, int policy,
struct sched param *param, bool user)

{
#ifndef CONFIG BOSSA

int retval, oldprio, oldpolicy = −1, on rq, running;
unsigned long flags;
. . .
rt mutex adjust pi(p);

#endif
return 0; 10

}

3.6 Normalize task and normalize rt tasks
These two functions are used when the Magic SysRq key option is activated in the

kernel configuration. They help in debugging the kernel in the case of a crash. Normal-
ize task() calls functions deactivate task() and activate task() which were previously
removed (cf. Section 3.1) and it also sets the resched flag to the current process. The
change to the resched flag is the reason why we need to remove this function. The
function normalize rt tasks() must be removed because it calls normalize task().

Despite the removal of these functions, the Magic SysRq key can still be used to
obtain information that does not involve calling these functions. The Magic SysRq key
can also be disabled completely using the Magic SysRq key option inside the kernel
configuration (located under Kernel Hacking→Magic SysRq key).

#ifdef CONFIG MAGIC SYSRQ
static void normalize task(struct rq *rq, struct task struct *p)
{
#ifndef CONFIG BOSSA

int on rq;

update rq clock(rq);
on rq = p−>se.on rq;

if (on rq) 10
deactivate task(rq, p, 0);
setscheduler(rq, p, SCHED NORMAL, 0);

10

if (on rq) {
activate task(rq, p, 0);
resched task(rq−>curr);
}

#endif
}

20
void normalize rt tasks(void)
{
#ifndef CONFIG BOSSA

struct task struct *g, *p;
. . .
normalize task(rq, p);
. . .

#endif
}
#endif 30

3.7 Pick next task and put prev task
The function pick next task(struct rq *) chooses the most appropriate eligible pro-

cess to run. The function put prev task(struct rq *, struct task struct *) deactivates the
previous running task before the next election.

These two functions, used when an election is made, call functions of the scheduling
class of the running process, so these functions need to be disabled when it is Bossa
that decides which task to elect.

#ifndef CONFIG BOSSA
static void put prev task(struct rq *rq, struct task struct *p) {

. . .
p−>sched class−>put prev task(rq, p);
}
#endif

#ifndef CONFIG BOSSA
static inline struct task struct *
pick next task(struct rq *rq) { 10

. . .
if (likely(rq−>nr running == rq−>cfs.nr running)) {

p = fair sched class.pick next task(rq);
if (likely(p))

return p;
}

class = sched class highest;
for (; ;) {

p = class−>pick next task(rq); 20
if (p)

return p;
/*
* Will never be NULL as the idle class always
* returns a non-NULL p:
*/

class = class−>next;
}
}

11

#endif 30

12

4 Kernel source modification

4.1 Bossa events
The Bossa runtime system is based on nine event notifications, which has to be

inserted at various places in the kernel source code. They allow Bossa to be notified
when a kernel event occurs that is relevant to scheduling. Here is a list of the event
notification functions:

• rts clocktick()

• rts create process wake(struct task struct *)

• rts create process sleep(struct task struct *)

• rts terminate process(struct task struct *)

• rts unblock preemptive(struct task struct *)

• rts unblock nonpreemptive(struct task struct *)

• rts schedule(struct task struct *)

• rts set priority(struct task struct *, int)

• rts yield(struct task struct *)

Added code chunks have to be enclosed between the #ifdef CONFIG BOSSA direc-
tive in order to enable the code only if Bossa is activated in the kernel options.

4.2 Sched.h header
In order to make Bossa functions available to the whole kernel, the following code

must be added inside the include/linux/sched.h file:

#ifdef CONFIG BOSSA
#ifdef EXPORTS
#include <linux/bossa policy rts.h>
#else
#include <linux/bossa rts kernel.h>
#endif
#endif

Each process task structure will have to contain some information about Bossa, so a
data field has to be inserted inside the task struct structure:

struct task struct {
. . .

#ifdef CONFIG BOSSA
struct bossa struct bossa;
int bossa data[CONFIG BOSSA DATA SIZE];

#endif
};

13

4.3 Bossa init
Bossa is initialized usinig the function bossa init(). This function must be called

inside the start kernel() function in init/main.c file before interrupts are enabled.

asmlinkage void init start kernel(void) {
. . .
sort main extable();
trap init();

#ifdef CONFIG BOSSA
bossa init();

#endif
mm init();
. . .
/* Do the rest non- init’ed, we’re now alive */ 10
rest init();
}

4.4 Rts clocktick
The rts clocktick() function notifies Bossa that a clock interrupt has occured. This

function is inserted in the function timer interrupt(int, void*), located in arch/cpu arch/kernel/time.c.
The linux/sched.h header must also be inserted at the beginning of this file.

For the x86 architecture, the modifications are made in the arch/x86/kernel/time.c.

#ifdef CONFIG BOSSA
#include <linux/sched.h>
#endif

. . .

static irqreturn t timer interrupt(int irq, void *dev id) {
. . .

#ifdef CONFIG BOSSA 10
rts clocktick();

#endif

return IRQ HANDLED;
}

4.5 Rts create process
Rts create process wake(struct task struct*) and rts create process sleep(struct task struct*)

allow Bossa to know when a process is created. The former notifies Bossa that the cre-
ated task is in the TASK RUNNING state and the latter notifies Bossa that the task is
in the TASK STOPPED state.

The notification is added to the function do fork() in the kernel/fork.c file:

long do fork(unsigned long clone flags, unsigned long stack start, struct pt regs *regs,
unsigned long stack size,
int user *parent tidptr,

14

int user *child tidptr) {

. . .
if (unlikely(clone flags & CLONE STOPPED)) {

/*
* We’ll start up with an immediate SIGSTOP.
*/ 10

sigaddset(&p−>pending.signal, SIGSTOP);
set tsk thread flag(p, TIF SIGPENDING);

#ifdef CONFIG BOSSA
rts create process sleep(p);

#endif
set task state(p, TASK STOPPED);

} else {
#ifndef CONFIG BOSSA

wake up new task(p, clone flags);
#else 20

rts create process wake(p);
#endif
}
. . .
}

The task is initialized inside this function so Bossa is notified that a new task has
just been created and is ready to be elected. The call to wake up new task() is disabled
because we do not want the scheduling class to do the startup management by calling
the CFS (cf. Section 3.2).

4.6 Rts terminate process
When a task terminates, Bossa is notified using the rts terminate process(struct task struct*)

function. The notification is done in the release task() function in the kernel/exit.c file.
The release task() function is called when a task has exited and is ready to be freed.

void release task(struct task struct * p) {
. . .
write unlock irq(&tasklist lock);
release thread(p);
call rcu(&p−>rcu, delayed put task struct);

#ifdef CONFIG BOSSA
rts terminate process(p);

#endif
10

p = leader;
if (unlikely(zap leader))

goto repeat;
}

The call is made just before the function either ends or repeats. Just before the
function repeats, the process has been freed and it is safe to notify Bossa.

15

4.7 Rts unblock preemptive and Rts unblock nonpreemptive
The functions rts unblock preemptive(struct task struct*) and rts unblock nonpreemptive(struct

task struct*) inform Bossa what process is going to wake up. The former asks to
reschedule after unblocking the task whereas the latter does not.

static int try to wake up(struct task struct *p, unsigned int state,
int wake flags) {

. . .
if (!(p−>state & state))

goto out;

#ifndef CONFIG BOSSA
if (p−>se.on rq)

goto out running;
#endif 10

cpu = task cpu(p);
orig cpu = cpu;

schedstat inc(p, se.nr wakeups);
if (wake flags & WF SYNC)

schedstat inc(p, se.nr wakeups sync);
if (orig cpu != cpu)

schedstat inc(p, se.nr wakeups migrate);
if (cpu == this cpu) 20

schedstat inc(p, se.nr wakeups local);
else

schedstat inc(p, se.nr wakeups remote);
#ifndef CONFIG BOSSA

activate task(rq, p, 1);
#endif

success = 1;

. . .
30

out running:
trace sched wakeup(rq, p, success);

#ifdef CONFIG BOSSA
if (wake flags & WF SYNC) {

rts unblock preemptive(p);
} else {

rts unblock nonpreemptive(p);
}

#else
check preempt curr(rq, p, wake flags); 40

#endif

p−>state = TASK RUNNING;
out:
task rq unlock(rq, &flags);
put cpu();

return success;
}

16

The function try to wake up() (located in kernel/sched.c) is used to wake up a task.
We use the flag WF SYNC to know if the wake up should be preemptive or not. If
the flag is set, the wake up is preemptive and Bossa sets the rescheduling flag of the
currently running task. The function check preempt curr() is disabled because we don’t
want the CFS to interfere with Bossa as explained in Section 3.2.

4.8 Rts set priority
The rts set priority(struct task struct*, int) function notifies Bossa that a process

priority is asked to be modified, for example, with the renice command. We replace the
body of the function set user nice(struct task struct*, long) (located in kernel/sched.c)
with a call to Bossa set priority function, rts set priority().

void set user nice(struct task struct *p, long nice)
{
#ifdef CONFIG BOSSA

rts set priority(p, nice);
#else

. . .
/* set user nice code */
. . .

#endif
} 10

4.9 Rts yield
The function rts yield(struct task struct*) notifies Bossa that a process would like

to voluntarily relinquish the processor. As done for the function rts set priority() (cf.
Section 4.8), the body of sys sched yield() (located in kernel/sched.c) is replaced with
a call to Bossa yield function, rts yield(). We still keep the call to schedule() just before
the function returns in order to let Bossa elect a new process.

/*** sys sched yield ***/
SYSCALL DEFINE0(sched yield)
{
#ifdef CONFIG BOSSA

rts yield(current);
#else

struct rq *rq = this rq lock();

schedstat inc(rq, yld count);
current−>sched class−>yield task(rq); 10

/*
* Since we are going to call schedule() anyway, there’s
* no need to preempt or enable interrupts:
*/
release(rq−>lock);

spin release(&rq−>lock.dep map, 1, THIS IP);
raw spin unlock(&rq−>lock);

preempt enable no resched();
#endif 20

schedule();

return 0;
}

17

4.10 Rts schedule
The rts schedule(struct task struct*) function asks Bossa to elect a new task. In the

Linux kernel, the schedule() function (located in kernel/sched.c) is called when such an
election is needed. Rts schedule() replaces the pick next task() function (cf. Section
3.7) in order to let Bossa choose the next process that will run on the processor.

asmlinkage void sched schedule(void) {
. . .
if (prev−>state && !(preempt count() & PREEMPT ACTIVE)) {

if (unlikely(signal pending state(prev−>state, prev)))
prev−>state = TASK RUNNING;

#ifndef CONFIG BOSSA
else

deactivate task(rq, prev, 1);
#endif

switch count = &prev−>nvcsw; 10
}

pre schedule(rq, prev);

if (unlikely(!rq−>nr running))
idle balance(cpu, rq);

#ifndef CONFIG BOSSA
put prev task(rq, prev);
next = pick next task(rq); 20

#else
unsigned long flags;
spin lock irqsave(&bossa scheduler lock, flags); /* no point to this */
next = rts schedule(prev);
clear tsk need resched(prev);
spin unlock irqrestore(&bossa scheduler lock, flags);

#endif

if (likely(prev != next)) {
. . . 30

}

18

