
April, 2018

I-GREENHOUSE

Aquaponics connected greenhouse

Project carried out by
SURIER GAROFALO Aurélien

FERREIRA Joffrey
OZENDA Thomas

Tutored by

PALIX Nicolas

Summary

Introduction

I - Project bases

1 - LoRa
2 - Data framing
3 - Gateway

II - Server

1 - LoRaWAN
2 - Data storing
3 - Data visualization
4 - Alerting

III - Project future

1 - Automatisation
2 - Security
2 - Mobile app
3 - Docker
4 - Easy node registration

Conclusion

Introduction

Aquaponics farming combine aquaculture and hydroponics, the aim is to automate
the greenhouse with sensors which will allow the farmer to monitor its proper
functioning.
It has been done in collaboration with IESE, who will program sensors, and us who
has deployed a system which will manage reception, processing and display datas.
Moreover, one purpose of this project was to manipulate LoRa communication
technology
To link LoRa and internet, a gateway is needed and It is shared with 2 others project
so 8 people have worked on this part of the project and informations have been
shared for the part beyond the gateway because our work was similar.

I - Project bases

1 - LoRa

LoRa is a long range wireless data communication protocol (up to 10 km). A 7xxx
card is placed in the greenhouse with a nucleo..
There are 3 reasons why LoRa has been chosen :

_ Its long range capacity : As written above, the gateway is used in 3 projects.
One of this project is a connected greenhouse at “Les jardins du couteau” which is
far from the 2 other projects. LoRa allow us to centralize all communications toward
one server and use less energy.

 _ Low consumption use :In an ecological interest, IESE students have
programmed the card to be in low power mode.

_ LoRaWAN : In the event where several aquaponics greenhouse will be
connected, a protocol layer above the physical one would be necessary. LoRa
already has one : LoRaWAN which is efficient and easy to implement.

In the first step, we tested the LoRa nodes between them (using the ping-pong demo
program from Semtech), and with the gateway in “raw” LoRa, meaning that the
gateway was listening to the environment, without any “intelligence”.

The nodes radio parameters for our experimentations are configured as following :

- Region Europe, 8683 MHz
- SF7 (payload up to 130 bytes)

The packet forwarder is configured to match these parameters.

2 - Data framing

There are 5 differents sensors in the greenhouse which will measure temperature,
humidity and water level. They will ensure the smooth running of the greenhouse.
IESE students have taken care of their configurations and the programmation of
LoRa card.

A protocol has been decided between IESE students and us for LoRa packet :

sensor1_id measure_value sensor2_id measure2_value ...

1 byte 4 bytes (1 float) 1 byte 4 bytes (1 float)

All values (sensors IDs and measurements values) are concatenated, without
separators, to save bandwidth.
It does not complexify the parsing on the server, as the parser will consume bytes
from the payload one-by-one, to fill typed variables.

Adding an ID to each measure (instead of just concatenating measurements as in
the old protocol) allows us to transmit only data that has to be sent. For instance,
some values are not going to change between two sensors readings, so they can be
omitted to save bandwidth.

For the moment, we have chosen to use a 1-byte encoded ID, but it lacks of
optimization, as 4 bits are sufficient to monitor up to 16 sensors.

3 - Gateway and switch

A LoRa PicoCell gateway will be setted up at Polytech to receive all LoRa packet
delivered by the 3 projects, to serialize them into JSON objects and then transmit
with a packet forwarder program.
It will be connected to a Raspberry Pi where a node-red program will be deployed.

This node will listen on UDP port 1080 (as configured in the JSON configuration file
used by the packet forwarder), and receive raw datas which will be redirected using
a mqtt broker (mosquitto) to our node-red program parsing the packet.

II - Server

1 - LoRaWAN

The Lora Server

With the LoRaWAN server, we don’t need to use the node-red program to switch the
data between the projects (so gaining 1 byte). A LoRaWAN server has been installed
to ensure QoS, security, low-power running, and to manage frequency channel and
data rate.

When the server receive a raw LoRaWAN packet from the packet forwarder, It
checks if It comes from our greenhouse’s card, else discards it, making our system a
private network.
This LoRaWAN packet looks like a LoRa one, but the MAC mechanism is embedded
in the payload field, so adding some header, as described in this figure :

LoRaWAN packet structure
(​https://www.researchgate.net/figure/LoraWAN-Packet-Structure_fig2_318575428​)

In our project, we have decided to use the Activation By Personalization (ABP)
method. In this case, the MAC parameters are hard-coded in the device. For
instance, we have defined three mandatory parameters in the node (defined in the
Commissioning.h file on the LoRa node) :

- the devAddr, the unique logical address of the node within the private
network, which is 12345678 here

- the AppSKey, used in encryption and decryption of the payload
- the NwkSKey, to check the validity of the message.

https://www.researchgate.net/figure/LoraWAN-Packet-Structure_fig2_318575428

Its seems to be the best method to use when prototyping a LoRaWAN solution, as it
is more easy to debug. In fact, the other method, Over-The-Air-Activation, needs a
dialogue with the LoRa server to negotiate its address and the keys, making it more
difficult to debug, but making it more secure as the keys are not fixed.

We didn’t have time to compare the main (most popular) open-source solutions,
which are :

- the The Things Network (TTN) stack, deployed on one of the well-known
global networks,

- Loraserver.io, a direct competitor, often advertised on the TTN forum,
- Lorawan-server (https://github.com/gotthardp/lorawan-server), from Petr

Gotthard, written in Erlang, licensed under the MIT licence, which we are
using in the project.

The latter is easy to install. After installing the requirements such as the Erlang
interpreter, you need to install a deb file. Moreover, it comes with a dense
documentation, which was heavily used during the server settings, as LoRaWAN
comes with lots of parameters to configure.

Even light, it comes with features such as :

- a web frontend to manage it
- an API
- interfaces to other protocols to send processed data

This figure below describes the software’s architecture :

The Lorawan-server architecture. We will use the web administration frontend to configure the LoRa
processor, and a MQTT connector to publish the decrypted useful data.
(​https://github.com/gotthardp/lorawan-server​).

Although this document is not intended to be a tutorial of how to install and configure
this LoRaWAN server, we will briefly discuss on the main steps to achieve a running
private network :

https://github.com/gotthardp/lorawan-server

- register a gateway. It has to match the packet forwarder’s configuration (such

as the gateway ID and the UDP port the server has to listen to)
- create a network profile, defining the radio parameters, such as the band

used, the coding rate, the Adaptive Bit Rate, the transmission powers
- create a profile for nodes that will be connected to this network
- create a node, with its address and the differents keys as seen above.

Node edition on the web interface with its parameters.

At this point, the server is capable of receiving, decrypting and extracting our
applicative data :

Here are some dumped frames. We can see that packets are coming from node with address
12345678, and are receiving by the gateway with address AA...09 (MAC field). We can also see
useful information about the radio transmission quality, which can be used to properly configure the
radio parameters. Note that the Port (15) corresponds to the application logic (at each application a
port is designated, for instance the reserved port 224 is used for control). The data, displayed as hex,
corresponds of two measures sent with the new protocol (see “01” and “02” IDs).

To publish application data for next processing (i.e the parsing and the storage to the
database), we use MQTT as a connector.

The nodes

In the node side, it exists numerous librairies for mbed-powered devices to
implement the LoRaWAN protocol, such as IBM LMIC. Here, we will use the
LoRaWAN library, developed by Semtech.
So, we have forked one of their programs, to analyse and test it.

First, we have to define the MAC parameters (defined in the Commissioning.h file) :

Then other application and radio parameters need to be defined to connect to a
private network (they are defined on the main.cpp file), such as :

- the port : ​LORAWAN_APP_PORT
- the payload size (useful data only) : ​LORAWAN_APP_DATA_SIZE
- the join method : ​OVER_THE_AIR_ACTIVATION​ (defined to 0 for ABP)
- the ability to connect to public network : ​LORAWAN_PUBLIC_NETWORK
- the ADR : ​LORAWAN_ADR_ON
- the datarate, corresponding to a certain spread factor and bandwidth :

LORAWAN_DEFAULT_DATARATE ​ (here DR_5 corresponds to SF7 125MHz).

Finally, we added all the sensor data collecting and the framing code parts (in the
PrepareTxFrame ​ function) we have developed and tested earlier to complete the
program, which can now send data through LoRaWAN.

2 - Data storing

Then, measures are parsed and put in an influxDB database.
InfluxDB has been chosen because It is an open-source time series database very
suitable for IoT.

A database with one table is created with several keys : the time first then there will
be all the measurements.

The (simple) schema of the database is the following.

For each “table” containing data, we can see that each records comes with a
timestamp and a sensor measure :

3 - Data visualization

At the beginning, Grafana was chose to interface with the end user. It provides
custom dashboards, containing graphs, to monitor data in real-time.

However, in order to not rely on a third party application, we have decided to create
a website that will be able to :

- See the datas
- Show location of the sensors
- Add new sensors.

The webpage was written with the Express framework to do the front and back in
JavaScript, the npm package body-parser to encode and decode JSON in JS and
plotlyjs as graphic library.

4 - Alerting

We added an alert system that notify the end user via HTML5 notifications if a new
value gets above a threshold. For the moment it is only an HTML5 notification, so the
webpage has to be opened in a web browser to see this notification, but in the near
future we hope to generate notification from the server side using a third party

system that allows us to send notifications using any means necessary such as
SMS, Email, popup notification on a smartphone for example.

Currently, every time new values are added, the front end script checks that none of
the new values get above the threshold. If that is not the case, then the script
generate a notification.

III - Project future

1 - Automatisation

Something which could be very interesting to implement is a 2 way communication
between the farmer and the greenhouse. If there is a problem in the crops, the
farmer can change a parameter or run a device remotely. It has not been been
implemented because the material and time necessary was unavailable.

2 - Mobile application

Considering that there are 2 student in multimedia speciality, It has been thought to
develop a mobile application which could notify the farmer when there is a problem
and allow him to watch out his greenhouse all the time without requiring him to have
a computer.
To achieve this, an application querying data directly in the influx database would
have been our way to do It..

3 - Docker

One of the objective at the start of the project was a docker to make It easier to
install and run our project. Yet, the implementation of a LoRaWAN server has been
privileged.

4 - Easy node registration

Thanks to the LoRaWAN server, the registration of new nodes will be easier.

The end-user could add new nodes on the web application, with known parameters,
and will call the server API to register it.
Finally, the LoRaWAN parameters could be installed on the node with a script,
retrieving parameters from the server and compiling the embedded program with
these definitions.

Conclusion

The objectives fixed have been nearly all accomplished except for the project’s
docker.
This project teach us to work with another team (IESE) while working in a team of 8
persons and a lot of new technologies of IoT word like node-red, mosquitto and
influxDB.
Our biggest difficulty have been to master LoRa technology : C++ was a language
never seen before and radio communications technologies was a foreign technology
to us.

