
Dashboard for the task manager OAR

Antoine SAGET - Alexis ROLLIN

1

Contents

1 Overview 3

2 Introduction 3
2.1 Presentation of the project . 3

2.1.1 The problem . 3
2.1.2 The context . 3
2.1.3 The goal . 3

2.2 Technologies . 3
2.2.1 React . 3
2.2.2 React-Admin . 3
2.2.3 Oardocker . 4
2.2.4 OarAPI . 4

3 Installing and starting the application 4

4 oar-dashboard 4
4.1 DataProvider . 4

4.1.1 Ressources . 4
4.1.2 Jobs . 5

4.2 AuthProvider . 5

5 Conclusion 7
5.1 React-Admin: Pros. and Cons. 7

5.1.1 Pros. 7
5.1.2 Cons. 7

5.2 React-Admin vs. Angular . 7
5.3 Improvements . 7
5.4 Personal thoughts . 8

2

1 Overview

As fourth-year computer engineering students, we were asked to take part in a project in
order to strengthen our computing and project management skills.

This document describes the purpose of the project, the technologies involved, our approach,
the problems we faced and ways of improvement. We tried to keep our critical thinking as
much as possible while writing this report, so it can serve as a guide for future works.

The source code of our application can be found at:
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/23/oar-dashboard/

Our documentation can be found at:
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/23/docs

A video demo of our application can be found at:
https://www.youtube.com/watch?v=CKCQPf8wR6A

2 Introduction

2.1 Presentation of the project

2.1.1 The problem

OAR is a resource and task manager for HPC clusters. Currently it can mostly be used
through an interactive command-line which is not ideal and not very user fiendly. Man-
aging thousands of resources and jobs can be a tedious task. Therefore, the need for an
administration dashboard to manage jobs et resources emerge.

2.1.2 The context

Some attemps to develop an OAR dashboard have been made in the past. oar skylight
was made by other students and wasn’t considered a good solution as Angular isn’t mature
enough and support for the application would need a lot of work. With this in mind, this
new project was created using React and React-Admin.

2.1.3 The goal

Once the new dashboard has been created a comparison between this environnment and
Angular can be made. The final goal is to say if yes or no, React + React-Admin are
suitable for a longterm dashboard solution for OAR.

2.2 Technologies

2.2.1 React

As said before, our dashboard application is based on React. React is a free Javascript
library developed by Facebook for building user interfaces. It is commonly used as a base
for developing mobile applications or single-page applications like our dashboard as it eases
the creation of interfaces thanks to pieces of code called components.

2.2.2 React-Admin

According to React-Admin official website, React-Admin, developed by Marmelab, is
”a frontend framework for building admin applications running in the browser, on top of
REST/GraphQL APIs, using ES6, React and Material Design”. In other words, it eases
(even more than React does) the building of an admin interface by providing ready-to-
use React components and functionalities. For example, React-Admin offers several
login components which aim to code efficiently an authentication system. Through the
dataProvider and authenticationProvider, it also enables to communicate with APIs,

3

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/23/oar-dashboard/
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/23/docs
https://www.youtube.com/watch?v=CKCQPf8wR6A

which will be very useful for our application.

It is important to note that our dashboard was developed in Typescript with React-
Admin v3, which still hasn’t completed its transition from Javascript to Typescript. We
will come back to this point at the end of the report.

2.2.3 Oardocker

Oardocker is the tool we used to emulate an OAR cluster with many nodes on our laptop.
With a simple command we can start a cluster as well as the server answering to API calls
without the need to connect to a real cluster. The setup is quite easy and is a real benefit
over a connection to a real cluster. OAR allow the management of many resources and
the scheduling of jobs for those resources. It also handles file management and permission
/ authentication control.

2.2.4 OarAPI

OarAPI is the link between the dashboard and the cluster. Everything going out of our
application will be a call to the API.

3 Installing and starting the application

The instructions for the installation of docker, oardocker and the application as well as
the starting of the application can be found here.

4 oar-dashboard

In the following sections we will take a look at the most important features of the project
and how they are implemented using react-admin.

4.1 DataProvider

The React-Admin dataProvider is the glue layer between the oarAPI (or any other
api) and the application. Once the dataProvider created, the app will make calls to
it. A basic dataProvider is given but in order to fit to the API it have to be adjusted.
The dataProvider perform mostly basic CRUD operations : getList, getOne, update,

updateMany, delete, deleteMany, create.

The dataProvider assume a fully featured API with pagination, filtering and sorting which
is not the case for oarAPI. Therefore, filtering and sorting is done after fetch for API calls
that doesn’t support it. This is not ideal but not a real issue as it’s not React-Admin
limiting the API but the opposite.

4.1.1 Ressources

In this project we focused on the OAR resources and jobs.
Resources can be viewed as a list, and opened to see the resource details. A resource can
be deleted, or its state updated. The same operations are available in bulk which allow to
manage multiple ressources quickly.

4

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/23/docs/-/blob/master/minimum_setup.md

Figure 1: Resources tab. One ressource details is open

4.1.2 Jobs

Jobs can be viewed as a list as well. A job can be created using a form where the most
important aspects of the job are defined. Jobs can be deleted.

Figure 2: Job creation form

4.2 AuthProvider

Following the architecture advised by the React-Admin documentation, the authentica-
tion aspect should be handled by a component of type authProvider. The authProvider

is supposed to implement the functions login, logout and some authorization and error
management functions such as checkError. Because the authentication is supposed to give
access to certain functionalities of OAR, like creating jobs, the authProvider must com-
municate with oarAPI.

However, the implementation of the authProvider wasn’t as simple as in the documen-
tation, as oarAPI doesn’t simply provide a login and a logout operation. The status of
the user (connected or not) as well as its credentials have to be stored on the application
side, and must be reinjected in every request to the API which requires to be authenti-
cated. That is the reason why the authRequester component, containing the function
authRequest, has been created. authRequest is used in the sensitive function (like create)
of the dataProvider, checking if the user is authenticated and if so, adding the credentials
to the request and sending it. Else, the user is redirected to the login page.

5

Figure 3: Login page

The basic logout button from React-Admin has been overriden to be turned into a
login button when nobody is connected. Clicking this button when connected calls the
logout function, clicking it when disconnected redirects to the login page.

(a) Logout button when connected (b) Login but-
ton when discon-
nected

Figure 4: Button states

Let’s detail a little bit how the login function has been developed, because it was tricky.
To make it short, the first approach of the login was to retrieve the credentials thanks to the
login page provided by React-Admin and then calls whoami with these credentials in order
to get a validation (2xx or 3xx status code returned, usually 200 OK) or not (4xx status
code returned, usually 401 Forbidden). This approach was the cleanest and the one adopted
by the students of Oar-Skylight project. But it appeared that the response of the API was
not only containing the status code but also a specific header (WWW-Authenticate) which
causes the browser to display an authentication pop-up when the code is 401. As we didn’t
find a solution on the application side, making a patch with a new operation on the API
side was necessary. Thus, the operation authentication was added to the API, returning
400 instead of 401 if the credentials are wrong.

There is a second difficulty we would like to mention, this time coming from React-
Admin. The redirection to the login page triggers calls to the functions checkAuth,
checkError and logout. This is the way the authentication in React-Admin was im-
plemented and we had to deal with although it brings some issues. To take an example,
when the user is redirected to the login page because an error occured, passing through the
logout function raises a warning but catching the error earlier stops the redirection, because
the redirection is prompted by the presence of an error.
This highlights the fact that when we want to get off the beaten track, development quickly
become harder and, instead of being helped by React-Admin, we are trying to bypass
React-Admin mechanisms.

6

5 Conclusion

5.1 React-Admin: Pros. and Cons.

5.1.1 Pros.

Even if we encountered some issues, objectively most things where quite straightforward.
The link with the API throught the dataProvider makes sense and is easy to understand.
Many integrated components are available already, limiting the code we have to do by hand.
Some of theim, such as the ListGuesser, allow for fast and convenient prototyping in the
beginning. The documentation is quite complete and guide through every important step
of the creation of a clean dashboard.

However, things can be complicated when you want to go off track as explained bellow.

5.1.2 Cons.

React-Admin claims to be ”batteries included but removable”. We found this affirmation
to be false, for example, a simple layout issue where we wanted to have two columns instead
of one cannot be done due to some react-admin limitations...

As explained in the authentication section, it could be hard to implements some custom
logic which doesn’t fit the perfect scenario described in the documentation. When we deal
with unusual cases, what is meant to be a tool become a limit. That is the problem of
having a too high-level framework.

React-Admin is currently migrating towards Typescript. Typescript strong typing
is a major benefit and quality of life improvement over Javascript. However, as it’s cur-
renlty in migration it was a pain to use for this project. We think Typescript support will
be a nice addition to React-Admin in the future, but currently, sticking to Javascript is
easier.

5.2 React-Admin vs. Angular

In our opinion, React-Admin may not be flexible enough to develop an efficient dashboard
for OAR. The one we have now works with few jobs and ressources, but isn’t suitable nor
convenient for the management of hundreds of jobs. Working with a lower level framework
may be more appropriate : there could be more work to do but we should gain in flexibility
and optimisation.

Compared to Angular, react-admin is retro-compatible and Javascript is compatible
with Typescript so, even if we don’t have the latest version of React-admin, it still works
and it is not considered as obsolete whereas Angular is too radical in its updates. Hence,
the maintenance of React-admin should be easier.
In terms of performances, it is hard to compare Angular and React-Admin as we never
tried Angular.
After having looked to the github repo of oar-skylight, we tried to measure the coding
efficiency offered by Angular but it is hard to guess which line of code was written by the
students and which line came from Angular. Nevertheless, our general feeling is that the
quantity of source code with Angular is higher than with React-Admin for an equivalent
result.

5.3 Improvements

The application is working well but there still are some warnings to debug as well as feature
to implement.

For the dashboard to be usable, we think that media support need to be added, as far
as we know there is no pre-made component for file management in React-admin. And,
our experience with the library leaves us skeptical about the implementation of a file system

7

”by hand”... React-admin allow the uploading of a file very conveniently with the FileIn-
put component but this might not be enough for a file system.

An integration of drawgantt and monika to the main page would be a convenient feature
as well.

5.4 Personal thoughts

One of the reasons we decided to choose this project was the web aspect of it. It seems an
essential skill today but we are not practicing much in our classes. This project was a good
opportunity to get our hands on Javascript / Typescript and React and we feel more
confortable with the basics concepts now.

8

	Overview
	Introduction
	Presentation of the project
	The problem
	The context
	The goal

	Technologies
	React
	React-Admin
	Oardocker
	OarAPI

	Installing and starting the application
	oar-dashboard
	DataProvider
	Ressources
	Jobs

	AuthProvider

	Conclusion
	React-Admin: Pros. and Cons.
	Pros.
	Cons.

	React-Admin vs. Angular
	Improvements
	Personal thoughts

