

Baptiste BOLÉAT - Rémy PALOMO

INFO4 - 2019/2020

Integration of Intel Movidius with RobAir

2

OVERVIEW:

In the context of our fourth year of Computer Science studies at Polytech

Grenoble, we chose to work on the incorporation of the Intel Movidius on the RobAir

project. Its purpose was to improve our teamwork and our skills in project

management.

In this document, you can find a summary of the work we have accomplished since

the beginning of the project. It can also be used for people who would want to improve

this project.

All the code and the documentation is available on this repository :

RobAirMovidiusPoject

TABLE OF CONTENT

INTRODUCTION .. 3
Context ... 3

Problem .. 3

Objective .. 3

TECHNOLOGIES USED TO DEVELOP THE PROJECT .. 4

RobAir ... 4

ROS-Kinetic... 5

Movidius .. 6

PROJECT PROGRESS .. 7

Ros Environment Installation ... 7

Movidius Environment Installation ... 8

Find an object-detection program .. 9

Edit our object-detection program and connect it to the turtlebot .. 10

Modifications on detection program ... 10

How did we connect ros and detection? .. 10

Our set-up .. 13

Results .. 13

CONCLUSION ... 14

Review .. 14

Prospects for the future .. 14

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs

3

INTRODUCTION :

Context :
Begun in 2012, at the Fablab laboratory, the RobAir project has been created

to provide an open-source and low-cost platform intended to teach ambient

intelligence and to enable efficient experimentation. To do this, it have been equipped

with multiple sensors as Lidars to detect obstacles or jog wheels to compute the length

it have travelled. During the last decade, Artificial Intelligence and especially image

detection started to be an essential tool for robots, softwares and tools. That’s why

important companies like Intel developed the Movidius, a low-cost and energy-saving

device which provides enough computing power to use AI on small platforms like a

Raspberry.

Problem :
 Thanks to all these sensors, RobAir can avoid most of the physical hurdles but

some of them remain difficult to detect with only two lidars. For example, if the robot

faces a table, the top lidar us to high to detect it and the bottom one is too low. That’s

why equipping RobAir with a camera seemed to be a feasible option. The Intel

Movidius NCS provided us a portable option which we can put on the robot.

How to make the communication between the camera and the motor functions

possible ? How to enable the robot to eye-track something ?

Objective :
 Our purpose is to add a camera to RobAir which will be directly connected to

the tablet and linked to the Movidius Neural Compute Stick. Then, the tablet

 have to compute informations about the objects detected by the Neural Network of

the NCS in order to enable a rostopic to control the motor functions of the robot. As

the Movidius and ROS are new tools for us, one of the first and the biggest tasks to

do was to document ourselves about their installation and their use. Then we had to

link these technologies by using the available material on RobAir.

4

TECHNOLOGIES USED TO DEVELOP THE PROJECT :

● RobAir :

 The RobAir project, developed at FabLab, is actually

broken down into several types of behavior, or “modes”

(teleoperation, autonomous and semi-autonomous)

divided into several robots having the same basic skeleton

(as opposite) but being equipped of specific tools to their task.

One of the models (visible on the picture) is equipped with a

small camera as well as a tablet, making it possible to make

online conference for example.

A second one is simply controllable by a remote control, but

is also equipped with Lidars sensors allowing for example the

robot to detect a wall and warn the pilot or force the stop

among others.

After several interviews with the FabLab manager, Mr. Lemasson, we decided that it

would be interesting to integrate an artificial intelligence (AI) into a semi-autonomous

model to detect obstacles (such as chairs or desks) much more effectively than with

Lidars and so alert the user in a more relevant way. We could also integrate AI into a

autonomous model so that it could look at a persons for example and follow them

when they move.

⇒ However, for the rest of this report, you will note that our experiences, our

achievements have been tested on a robot simulator (see paragraph about ROS

TurtleBot).

This is due to the fact that the health crisis caused by the Covid-19 prevented us from

having access to the FabLab and therefore to RobAir when we could start the phase

of real tests on it in order to test our programs.

5

● Ros-Kinetic :

Robot Operating System (ROS) is a set of tools to

develop softwares for robotics. It provides an operating

system for robots but also high-level features for their

development. It had been developed by Willow Garage in

2007 and its initial goal was to manage their flagship

product, the Personal Robot 2. When it has been

generalized, it enabled developers to avoid using a lot of

embedded programming while building it.

Ros is based on two languages which are C++ (roscpp) and Python (rospy). Every

node, topic or other component can be written with both of them. Moreover it isn’t

energy-intensive, that enables users to use this on embedded computers, as is often

the case in robotics. For example, a Raspberry Pi can handle ros for sure.

The Master is the core process of the ros computation graph (set of concepts which

are used while ros is running). It mainly contains a name server where nodes will

declare them. A node is an executable which can match with a sensor, a motor or just

an algorithm. A topic is an asynchronous information bus. When declaring it, you

choose a message type for every publisher and then, every node can either publish

on or subscribe to this topic.

In order to run a ros node, you will always have to run the roscore command which

initialize the Master and the Parameter Server. The Parameter Server is a space

that every node share and can add parameters like the speed limit you would like to

assign to the robot for example.

Figure 1 : Architecture of a simple ros computation graph

6

One of the main concepts of ROS is that it is in Peer-to-Peer architecture : A Ros

Node is linked with different topics which he can either publish messages on or

subscribe to. So it mainly uses an asynchronous communication, but it also provides

an other kind of synchronous communication thanks to the “Services” that we won’t

use in this project.

Eventually, ros-kinetic isn’t the last release of ros but it’s still maintained by Willow

Garage. Indeed, they released it in 2016 and will maintain it until 2021. Two new

versions have been released since kinetic (Lunar and Melodic) and they are starting

to migrate to ros2 which corresponds better with current companies applications. Even

with all these new features, keeping maintaining kinetic enables users as us to keep

programming in ros on a 16.04 version of Ubuntu.

● Intel Movidius :

The story of the Neural Compute Stick is quite

special. Indeed, at the beginning, it was developed by the

company named Movidius which was specialized in image

analysis.

However, when the company was going to sell the NCS,

this one was bought by Intel in September 2016, pausing

the process.

It’s only 1 year later, in September 2017, that Intel announced the release of its

Movidius Neural Compute Stick, which will be referred to as NCS later in this report.

At first, we imagine that this tool looks like a simple standard USB key, but the physical

comparison stops there because the NCS is used for much more complex purposes.

Indeed, the stick aims to provide Artificial Intelligence functions to different objects

(such as robots with a webcam for example) at lower material and energy cost.

To accomplish this complex task, the NCS has a Myriad 2 VPU which is used by most

image analysis devices which therefore require very large computing capacities.

This VPU has the particularity of needing only 1 W to operate, which is very

advantageous for the devices which the NCS can be equipped with. Even more if a

device already has a limited autonomy.

To put it simply, the Movidius has a very large computation and image analysis

capacity that it can put to the service of an embedded program on a device, and all

this at a very low energy cost. Therefore, the Movidius is the perfect tool to use an

artificial intelligence program on any machine !

7

PROJECT’S PROGRESS :

❖ ROS Environnement’s installation

 As you will see lower, one of the requirements of our project was he had to be

effective on Ubuntu 16.04 because of our choice concerning the neural network we

put in the Neural Compute Stick. That’s why we chose to work with kinetic in terms of

ros distribution. The fact is that, in the way we use it, there are relatively few differences

between kinetic and a later version of ros. As we hadn’t access to RobAir so often and

it required to come to the Fablab, ros also provided us a simulator named Turtlebot

which enabled us to test our code when we wanted. As we said into the RobAir’s part,

it turned out it has been essential since we couldn’t have access anymore to the

Fablab because of Covid-19.

Figure 2 : The TurtleBot’s window when we run it

In addition to this simulator, a message type, /turtle1/cmd_vel, was in the default

packages installed with ros. So we didn’t had to create new one since

/turtle1/cmd_vel contained all the informations we could have to give to the robot.

Indeed, this message type is made of a linear velocity and an angular velocity, both

comprised of 3 coordinates (x, y and z).

To help us to understand how ros works, we created a TalkerListener package which

sets up an exchange of informations between two nodes via a topic. We commented

it on our own word in

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-

/tree/master/catkin_ws%2Fsrc%2Fbeginner_tutorials%2Fsrc

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/tree/master/catkin_ws%2Fsrc%2Fbeginner_tutorials%2Fsrc
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/tree/master/catkin_ws%2Fsrc%2Fbeginner_tutorials%2Fsrc

8

❖ Movidius Environnement’s installation

 As part of our project, we first had to install the necessary environment in order

to be able to run programs using Movidius. This environment was only available on

Ubuntu 16.04, so we had to install a virtual machine running this operating system.

Once the VM was properly initialized (installation of git, configuration of the USB 3.0

ports in particular), we were able to install the package called ncsdk 1.0 (version 2.0

was available but only compatible with Movidius NCS 2 !).

The main features of this package, according to its official documentation, are :

● Profiling, tuning, and compiling a DNN model on a development computer (host

system) with the tools provided in the NCSDK.

● Prototyping a user application on a development computer (host system), which

accesses the neural compute device hardware to accelerate DNN inferences.

Figure 3 : How we use the Movidius (https://movidius.github.io/ncsdk/)

https://movidius.github.io/ncsdk/

9

❖ Find an Object Detection program

Then, we looked on Github if a possible object detection model, using the

Movidius, existed in order to be able to use it directly (and avoid us of having to

configure such a model ourselves). We finally found a repository called yoloNCS,

realized by Denis Gudovskiy (Available at the following address :

https://github.com/gudovskiy/yoloNCS).

The object detection program, named object_detection_app.py, makes it possible to

identify several types of entities such as people, a car, a computer, a bottle, etc. from

an input image.

However, it is also possible to recover several images per second thanks to a webcam,

and send these images to the program, in order to have a real time detection, which

perfectly corresponds to the behavior that we wanted to add to RobAir.

It should be noted that the detection capacities are determined from a “caffemodel”

type file which, as its name suggests, contains a pre-trained Caffe model (see below)

for the detection of objects on a picture.

Indeed, it’s necessary to remember that before being able to use an analysis program

based on an artificial intelligence, it’s first necessary to create and configure this

artificial intelligence !

To do this, we must create a model which we will assign the desired capacities

(detecting various types of objects for example). For the case of our program, we use

a Caffe model which is a deep learning framework (more informations about Caffe

here : https://caffe.berkeleyvision.org/).

This model will consist of layers of neurons, each neuron containing parameters which

will be adjusted through a training phase. It is therefore necessary to give a large

amount of input images so that the model can progress and thus improve the accuracy

of its judgment on a given image that it has potentially never seen before.

This training phase is costly in time, memory and energy for a normal machine

because it requires very large computing power.

Finally, when we consider that our model is fairly trained, it is possible to export it as

a .caffemodel file.

This is the file that we got from the Github repository, allowing us to greatly facilitate

the Artificial Intelligence part of our project.

It turns out that the ncsdk environment offers the possibility of compiling a model in a

"graph file" from a pre-trained model file, all this thanks to the command

https://github.com/gudovskiy/yoloNCS
https://caffe.berkeleyvision.org/

10

mvNCCompile. It’s this graph file which will then be used by the movidius to apply the

various calculations relating to image analysis.

Once the compilation was completed, we were able to test the program. Its speed, its

precision and the result is rather very satisfying !

→ Below are examples of using the program with a simple input image :

Input Image Detection program’s Output

We can observe that the program is able to frame a detected object, to indicate its

type and to give a “confidence index” between 0 and 1.

11

→ An example with video input from a webcam :

❖ Edit our Object Detection program and connect it to the TurtleBot

⇒ Modifications made on detection program :

 First, we had to analyse the output of the program and also find useful data for

us like the object's type, its position on x-axis and on the y-axis.

 As you can see on the above example, the yellow cross corresponds to the

(0,0) coordinates and the green cross to the (448,448). An entity is localized by its

center, for example, on this picture, the bottle’s coordinates are the same as the red

cross (254.241, 189.342).

All this data is contained in an array called results. Then, we simply returned the

desired information in the form :

“DETECTED Object’s type Position X Position Y Width

Height”

The modified code can be seen in the file here : https://gricad-gitlab.univ-grenoble-

alpes.fr/Projets-INFO4/19-20/7/docs/-

/blob/master/code_for_Movidius/yoloNCS_modified/py_examples/object_detection_a

pp.py (from line 177).

⇒ How did we connect ros and recognition program :

Once our object-detection program was able to compute every type recognized

and his location, a major part of our work was to be able to collect these informations,

analyzing them and finally sending instructions to the robot depending on them. The

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/blob/master/code_for_Movidius/yoloNCS_modified/py_examples/object_detection_app.py
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/blob/master/code_for_Movidius/yoloNCS_modified/py_examples/object_detection_app.py
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/blob/master/code_for_Movidius/yoloNCS_modified/py_examples/object_detection_app.py
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/blob/master/code_for_Movidius/yoloNCS_modified/py_examples/object_detection_app.py

12

goal we fixed ourselves was that RobAir (or rather our simulated robot) was capable

of eye-track an entity identified by the object-detection program. With our simulation

code, we assume that the camera would be on the robot’s body and the simulated

turtle would represent its head. So if an entity appears in front of the webcam and

moves to the left of it, the turtle should rotate on her left and if the entity slightly moves

to the right in the robot’s point of view, the robot should slightly rotate on his right side.

To do that we first had to create two bash scripts (run_roscore.sh and run_turtlebot.sh)

which would setup the ros environment by sourcing a setup.bash file in ros-kinetic,

running roscore and starting the simulator. Then, we implemented two other scripts,

the first one run_movidius.sh setting-up the Movidius environment and then, launching

the object-detection program (we can interrupt it with the “q” key). And the second one,

run_process_output_movidius.sh collecting what is written on the standard output and

calling an awk file on each line of this output.

This awk file named Motion.awk is taking the first word of each line and if it is

“DETECTED”, it corresponds to the output of the object-detection program so it just

have to analyse the third word which is the x-motion i-e the horizontal movement since

the last call 1 second before. Depending on the value of this motion value, we wanted

the robot to more or less turn right or left in order to always watch the entity as long as

it is in his field of view. So this awk runs a command named rosparam set angular x

with x being this motion value.

An additional script is calling these two previous scripts by piping the first with the

second, which enables us to run the two parts of the process in concurrence.

 Angular is the name of the the parameter we set in the parameter server of

the roscore. So each second, it’s updated by our script. Then, another script

setnode.sh runs a node we created which is called testnode.py. This node firstly start

a “Listener” Thread which is designed to get every second the new value of angular

on the parameter server. Eventually every second, the main process of this file gets

this angular variable and sends a velocity_message to the simulator with angular.z

which equals to its value.

Finally a last script named yoloMain.py run all these scripts with a “&” at the end in

order to run them each in a subshell console in a concurrent way.

13

⇒ Our set-up :

❖ Results

As a result, our program is able to detect a person which is in the webcam’s

field of view, compute its location, analyzing it and send instructions to the robot in

order to make him rotate. With our simulation code, we assume that the camera would

be on the robot’s body and the simulated turtle would represent its head. Si if an entity

appears in front of the webcam and moves to the left of it, the turtle should rotate on

her left.

We chose this way of simulation because, as we are confined, we couldn’t simulate

well the fact that the webcam’s view is changing when the turtle is rotating.

14

So we have succeeded to make the turtle eye-track us. Our problem was how to make

the communication between the camera and the motor functions possible ?

We made the communication possible by including ROS instructions into the object-

detection program in terms of its outputs. Then, if we go on the left, our location on x-

axis change with a certain way, the program detect it and sends an instruction to the

TurtleBot the make it turn on the left like us.

A demo is available here : https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-

INFO4/19-20/7/docs/-/blob/master/Eye_Tracking_Demo/eye_track_demo.mp4

It shows how we run the program and how the Turtle follows movements.

CONCLUSION :
Review :

As students, we chose this project because the subject differed a lot comparing to

what we study. Indeed, we didn’t have the opportunity to study robotics programming

and it could be rewarding to discover it. During the first part of the semester, we

struggled to progress in our project because of the environment that Movidius and Ros

requires and the fact there are relatively few sites which demystify these technologies

except their creator site. That’s why we wanted to write documentation in our own

words so as to enable future students working on these tools to have further

informations and a documentation.

Once these two environments were successfully installed, the second part of the

project was more interesting when we had to find a way to communicate the object

detected and to make the robot move. However, because of the confinement, Rémy

kept the Neural Compute Stick so he was the only one able to run the Movidius part

of the program. So in order to test each part of the code we wrote, Baptiste always

had to send it to him, that’s why Rémy did the biggest part of the last commits on the

repository.

Prospects for the future :

As the second part of the project was during the confinement, we couldn’t try to deploy

our code and test it on RobAir. So as a prospect, we could adapt our code in order to

make it work on RobAir by adapting some files.

For now, it can only eye-track somebody, another feature to implement would be to

make RobAir be able to circumvent the people, or to stop before colliding. Finally,

currently, if the person goes out of the camera field, the robot stops. Another feature

would be to make this robot rotate until it finds back the person.

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/blob/master/Eye_Tracking_Demo/eye_track_demo.mp4
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/7/docs/-/blob/master/Eye_Tracking_Demo/eye_track_demo.mp4

