
 
Proxy HTTPS Cache 

Gaëtan RIVAL - Raphaël AUDIN 

 

INFO4 projects 2019/2020 Mr. Olivier RICHARD 



 
 

 

 

 

Table of contents  
 

 

 

Introduction 3 
Presentation of project 3 
Work access links 4 
Tools used (software) 5 

Squid Answer 6 
The first proof of the concept: HTTP 6 
The second proof of the concept: HTTPS 8 
Conclusion on the Squid solution 10 

CProxy Answer 11 
I. The first proof of the concept (self-certification HTTPS) 11 
II. The second proof of the concept (combine Cproxy with Kameleon) 12 

Conclusion 13 

Bibliography 14 

Appendix 15 

 

 

 

 

 

 

 

 

2 



 
 

 

Introduction 

I. Presentation of project 
 

The objective of this project was to search for solutions for the realization of a cache                               

supporting HTTPS (and HTTP). This project follows a project carried out several years ago                           

when HTTPS was less developed. 

However, we are starting from scratch as HTTPS is the secure version of HTTP and it                               

is important to fully understand the HTTP version before starting to work on HTTPS. The                             

difference with HTTP is that HTTPS has an encryption layer like SSL or TLS. 

The big difference with the HTTP version is that we will have to set up a certification                                 

authority in order to be able to manipulate the certificates needed to encrypt HTTPS                           

communications. This requires an understanding of the so-called MITM(Men In The Middle)                       

approach. 

Once the cache is operational, il will be necessary to integrate this solution into the                             

Kameleon system image generation tool.   

3 



 
 

II. Work access links 
 

A common workspace has been set up for this project. Our work including proofs of                             

concepts, written documents such as the SRS, our progress has been regularly updated on                           

the university's GitLab gricad. 

Our project can be found at the following address: 

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21  

 

For the sake of structuring, we have separated the drafting of proofs of concept and                             

documents. 

We also used the https://air.imag.fr page where the objective of the project and the work                             

plan to carry out the project were formulated. 

Our project page can be found at the following link: 

https://air.imag.fr/index.php/Proxy_Cache_HTTPS   

On this site, you will also find a link to our progress report and the various evaluation                                 

documents (final report, mid-term presentation,...)   

4 

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21
https://air.imag.fr/
https://air.imag.fr/index.php/Proxy_Cache_HTTPS


 
 

III. Tools used (software) 
 

This project required the use of many utilities. To start we were interested in                           

Mitmproxy and CProxy software. 

The first one is an interactive interception proxy, SSL/TLS compatible. 

It has different functionalities such as Mitmdump who is the command-line version of                         

Mitmproxy and Mitmdump who is a web-based interface for Mitmproxy. 

The second (CProxy) is HTTP and HTTPS caching proxy server. It will intercept the                           

Browser's HTTP/HTTPS requests and decrypt the traffic on-the-fly to store every successful                       

HTTP/HTTPS answer. 

We were also interested in a side solution that was not presented to us: Squid. 

This software is quite well known and used that’s why we decided to deepen this                             

approach in addition to CProxy and Mintmproxy. We installed squid on Ubuntu on a virtual                             

machine. So we used VirtualBox. Squid is normally managed in command line but we                           

installed on our virtual server the utility Webmin to have a graphical interface of                           

management. 

As with any network-related project, we need a tool to look at what is going to                               

happen on the network during our manipulations. We will use Wireshark to view and                           

analyze packets. 

 

 

 

   

5 



 
 

During the development of our project, before the starting, we have worked for 3 weeks                             

to find different answers at this issue, in other words how to set up Proxy Https Cache in                                   

Kameleon. With our searches, we have obtained two final answers. The first is Squid that is a tool                                   

very strong in the network world. Then, we have found a developing project that bases only on                                 

aim HTTPS Proxy. 

Squid Answer 

I. The first proof of the concept: HTTP 
 

In order to isolate the systems (so as not to install Squid locally) in order to avoid                                 

technical errors and to have a simplified view of network exchanges via Wireshark, we have                             

installed an OS called Lubuntu (a lighter version of ubuntu). 

 

We installed Squid by command line once the service is launched and operational.                         

As we explained in the previous chapter, Squid is normally administered by command line.                           

Most of the actions are done in the file: /etc/squid/squid.conf 

Squid is very sensitive, i.e. a single space can sometimes stop the service and put it                               

in error while preventing its restart. 

This is the reason why we installed Webmin (by command line too) allowing us to                             

have a web interface in order to administer Squid more easily. 

 

6 



 
 

Once the clients were configured (previous capture of the Firefox browser's network                       

configuration page), we just had to test and analyze by Wireshark the requests transiting                           

on the network. 

 

Note: We checked the box "Also use this proxy for FTP and HTTPS" but there is an                                 

important configuration to do at the server level, we will come back to this later. 

 

To test we looked for an unsecured site (HTTP) it's not so simple anymore that's why                               

we had to take over this project realized several years ago which was initially intended for                               

HTTP. 

For the HTTP Squid tests, we used www.onisep.fr. 

We made requests on this site. We do the manipulations when the cache of the                             

Squid server is empty. We can see that our client transfers his request to the server and                                 

that in a second time the server addresses directly to the Onisep web site to make the                                 

request and finally the Squid server gives the answer to the server. 

 

In a second time (a few minutes later) we repeat the interrogation to access the                             

Onisep web site. This time there is an exchange only between the client and the Squid                               

server because the information on the Onisep page is stored in the cache of our Squid                               

server. 

 

Thanks to this part we check that our server is operational for unsecured requests,                           

i.e. requests using HTTP. 

Now we will be able to configure this same server to integrate HTTPS. This is what we will                                   

develop next.   

7 

http://www.onisep.fr/


 
 

II. The second proof of the concept: HTTPS 
 

Now that the HTTP part works we can look at the HTTPS/SSL part, a useful part of                                 

this project. The secure part of Squid is quite complex and requires a good understanding                             

of how proxies and certificates work. The complex part is that you have to set up a                                 

certification authority and it is this certification authority that will generate certificates for                         

the sites going through the proxy. 

So there is a very important part of configuration on the server but it is also                               

necessary to import the certificate created by our authority in the browsers of our client                             

machines. We used the following website to make the configuration:                   

https://techexpert.tips/fr/squid-fr/installer-squid-avec-le-support-https-sur-ubuntu-linux/  

 

We started by adapting to our configuration (address space) the file openssl.conf                       

(/etc/ssl/openssl.conf), then we created the different directories needed to store the                     

certificates making sure we have the right permissions on these directories. 

We'll be able to create our own authority. As shown in the capture below we will                               

create a self-signed root certificate: 

 

 

8 

https://techexpert.tips/fr/squid-fr/installer-squid-avec-le-support-https-sur-ubuntu-linux/


 
 

We have just created our certificate valid for 10 years (this is the -days 3650 option). After                                 

that, we create a DER (Distinguished Encoding Rules) encoded certificate. This is the                         

certificate that will be imported in the client browsers. 

 

It’s this moment, that we can import the certificate with the .der extension on client                             

browsers. 

In the browser settings, in the "certificate" section we can download our certificate. 

 

Now it’s possible to test in the same way as for HTTP. We notice that in spite of the                                     

HTTP or HTTPS site this last one is stored in the cache of our proxy. 

 

 

 

 

 

 

 

9 



 
 

III. Conclusion on the Squid solution 
 

Squid is a very interesting solution because it is complete. It’s very widespread in the                             

professional world. 

This solution was not proposed to us as a possible solution for this project but after                               

an exchange with Mr Richard, we decided to deepen this solution in parallel with the                             

solutions that were proposed to us, i.e. CProxy, Mitmproxy. 

After various researches and experiments, we managed to set up a functional                       

solution in HTTP and HTTPS with this tool. 

Nevertheless, we decided not to continue in this way because Squid although                       

complete is very complex and heavy to manage because Squid is to be used with the                               

access list (ACL) which is not necessarily inadequacy with the finality of what we want to                               

make of it. 

Indeed once the cache is functional, our goal is to integrate our solution with the                             

Kameleon tool to create a system image. After a research session, we have not found how                               

to link Squid and Kameleon, that's the main reason why we did not choose this solution. 

 

 

 

   

10 



 
 

CProxy Answer 
Cproxy is a project currently in developing that we can found on the GitHub platform.                             

This is the link to this project if you wanna more information about this:                           

https://github.com/coiby/cproxy 

I. The first proof of the concept (self-certification HTTPS) 
 

In the first time, we have worked about the self-certification HTTPS that we find in                             

Proxy HTTPS tool. This allows the security and viability of many identities. Before to work                             

on Cproxy, we have seen that lot of tools use Mitmproxy project’s tool. It gets certificates                               

that can decrypt encrypted traffic on connection. This certificate authority is very famous                         

and the same used by Cproxy tool. So we have gathered our works to Mitmproxy and its                                 

working.  

 

Moreover, we have learned to have expert knowledge of Mitmproxy and CProxy. So                         

we have worked the certificate authority at the same time on Mitmproxy and CProxy. We                             

have done the installation of these two tools and test them. 

 

Our proof of the concept on GitHub : 

1. To install one on these two tools (Mitmproxy or Cproxy) 

2. To set up proxy of browser to listen on the port 80 in localhost 

3. To access on the web site 'http://cp.ca' to accept and install certificate authority                         

from Mitmproxy  

4. The tool is done and you can use it to test him and see traffic between network                                 

identities and our proxy 

 

 

 

 

11 

https://github.com/coiby/cproxy
http://cp.ca/


 
 

II. The second proof of the concept (combine Cproxy with Kameleon) 
 

Once time that we have the knowledge about the working of CProxy with the                           

certificate authority from Mitmproxy, the new issue was to combine CProxy and Kameleon.                         

Our teacher tells us that Kameleon already gets cache proxy but only to HTTPS traffic. So                               

we have to switch the Kameleon’s cache Proxy (cf. Polipo) with that of CProxy. 

 

Before getting started this task, we have done the same understanding of work. As                           

we have said in the introduction, Kameleon is a tool to generate customized appliances by                             

recipe making. To this, we have manipulated several recipes to understand how Kameleon                         

is working and how to configure HTTP cache of this tool. 

 

We have been meeting many issues understanding about coding : 

- Create and execute a recipe 

- Locate code source of Polipo with its dependencies 

- Understand the factors to change to CProxy 

At this moment, we have become aware of the Kameleon’s complexity but also its                           

power in this field. Primarily, it’s a work of reading and understanding to merge Kameleon                             

and HTTPS cache of CProxy. 

 

Then, we are success to remove Polipo, that was the ex HTTP cache of Kameleon                             

and set up Cproxy inside the source code of Kameleon. Unfortunately, the current issue                           

that we have, it’s a compatible issue, more precisely a TCP connection issue. We have able                               

to create new recipes with this new HTTPS cache but we don’t know yet why it doesn’t                                 

work. We think that we miss knowledge about network used by Kameleon in this                           

application. It isn’t as simple as we think, just to switch between Polipo and CProxy. There                               

are other factors that we ignore and that must be main elements. 

   

12 



 
 

Conclusion 
 

This project has been an interesting and rich experience in the network world.                         

Gaëtan RIVAL and Raphaël AUDIN, we are happy to work about this because it’s a field                               

which captivates us each day and we know the importance of the cybersecurity. 

We have learned to work on a new technology with any knowledge. We can tell that                               

we have done three different steps. The first is to understand the expectation of                           

customers, the second is to inform it-self technologies asked and in last time, once time all                               

is clear, to develop and test our ideas. 

 

In the end, we haven’t reached our main goal, to set up an HTTPS cache Proxy inside                                 

Kameleon application. But, we have found an eventually answer at this issue with CProxy                           

which reply at our expectation. It’s possible with more time or maybe with more knowledge                             

about the Kameleon’s working, we will be able to finish our project. 

 

To conclude, the CProxy tool can be merged with Kameleon because CProxy gets                         

already Proxy HTTPS cache used the certificate authority from Mitmproxy which can be                         

also used by Kameleon. Our proofs of concept show conclusive results so a person who                             

works on the Kameleon development could easily include this new feature.   

13 



 
 

Bibliography 
 

Project Git documentation: 

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/docs 

 

Project Git Prof Concept: 

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/preuveconcept 

 

Dashboard Project: 

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/docs/-/blob/master/REA

DME.md 

 

CProxy Git: https://github.com/coiby/cproxy 

 

Mitmproxy web site: https://docs.mitmproxy.org/stable/ 

 

Kameleon web site: http://kameleon.imag.fr/ 

 

Kameleon Git: https://github.com/oar-team/kameleon 

 

Illustration: https://pixabay.com/fr/photos/proxy-serveur-proxy-proxy-gratuit-4620558/   

(Authorized reuse without commercial purpose) 

 

 

 

14 

https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/docs
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/preuveconcept
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/docs/-/blob/master/README.md
https://gricad-gitlab.univ-grenoble-alpes.fr/Projets-INFO4/19-20/21/docs/-/blob/master/README.md
https://github.com/coiby/cproxy
https://docs.mitmproxy.org/stable/
http://kameleon.imag.fr/
https://github.com/oar-team/kameleon
https://pixabay.com/fr/photos/proxy-serveur-proxy-proxy-gratuit-4620558/


 
 

Appendix 
 

SQUID - Certificate view created by our certification authority 

 

 

 

 

 

 

 

 

 

15 



 
 

 

SQUID - web interface and server configuration 

 

16 



 
 

 

CProxy - Diagram of the first proof (sefl-certification HTTPS) 

 

17 


