Project report
Sonotone

Julian Hattinguais - Germain Lecorps - Manuel Voutat

April 5, 2016

Contents

(1 _Introduction|

[2 Specifications|

[3 Technologies and tools used|

A P .

4.2 Graphic equalizer| o 0oL
4.3 Live equalizer| oo

65_Evolution
6 Problems encountered|

1 Introduction

Being partially deaf costs a lot of money. Once people have been diagnosed,
they are given a hearing aid which has to be set up regularly by a professional
and that is what costs a lot of money.

The tool we developed is made to be a viable alternative to those regular
settings via a simple application that enables patients to set up their hearing
aid themselves.

This tool should come as the cheap solution for patients that cannot afford
the price of a professional on a regular basis.

2 Specifications

The goal of this project was to develop a software that allows a user to to
set his hearing aid up by himself using his audiogram.

Seeing those conditions, we have to able to provide different features.
e Choose the frequencies to be modified
e Process real time audio

e Apply the needed filters in real time

The software will provide two different modes to be used.

e Basic mode : Choose the frequencies to modify and the gain to apply
depending on the audiogram

e Advanced mode : Possibility to modify every frequencies and to choose
the filter that will be applied to set up the hearing aid as pleased

The software has to be easy to use as it will be mostly used by senior who are
not familiar with computers and software. Moreover, the goal is to provide
an alternative to the cost of seeing a professional to set up the hearing aid.
It is then important to be able to set up the hearing aid without the help of
an IT specialist.

3 Technologies and tools used

The project was develop entirely in python using different tools and modules
developed for python.

3.1 NumPy

NumPy is the fundamental package for scientific computing with Python. It
contains among other things:

e a powerful N-dimensional array object
e sophisticated (broadcasting) functions
e tools for integrating C/C++ and Fortran code

e useful linear algebra, Fourier transform, and random number capabili-
ties

Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and speedily integrate with a wide
variety of databases.

Source : http://www.numpy.org/

From NumPy, we have imported several mathematical functions to be able
to create our own filters such as low pass, high pass or peaking filters.

As stated before, NumPy also provides a powerful N-dimensional array ob-
ject which comes to be very helpful to implement Z-Transforms and Fourier
Transforms.

3.2 SciPy

SciPy (pronounced “Sigh Pie”) is an open source Python library used by sci-
entists, analysts, and engineers doing scientific computing and technical com-
puting.

SciPy contains modules for optimization, linear algebra, integration, inter-
polation, special functions, FFT, signal and image processing, ODE solvers
and other tasks common in science and engineering.

Source : https://en.wikipedia.org/wiki/SciPy

http://www.numpy.org/
https://en.wikipedia.org/wiki/SciPy

SciPy provided us with many useful already implemented filters. We used
those filters (such as lfilter) to create our own filters and doing so, process
the signal for our hearing aid device.

Scipy allows us to use directly implemented Fast Fourier Transform as well
as many others scientific functions that we used to process audio files and
live audio.

We also used a SciPy module allowing us to read and use a wave file. We
needed that step to be able to do live audio processing afterward.

3.3 Matplotlib

matplotlib is a python 2D plotting library which produces publication quality
figures in a variety of hardcopy formats and interactive environments across
platforms.

matplotlib tries to make easy things easy and hard things possible. You can
generate plots, histograms, power spectra, bar charts, errorcharts, scatter-
plots, etc, with just a few lines of code.

Source : http://matplotlib.org/

These few lines make it quite easy to understand what is the purpose of
matplotlib. We used it to plot the result of our filters and to make sure what
we were doing was actually accurate.

3.4 Pyaudio

PyAudio provides Python bindings for PortAudio v19, the cross-platform au-
dio I/0 library. With PyAudio, you can easily use Python to play and record
audio streams on a variety of platforms (e.g., GNU/Linux, Microsoft Win-
dows, and Mac OS X).

Source : https://pypi.python.org/pypi/PyAudio

To capture live audio a do live audio processing, we had to use pyaudio.
We encountered a few problems with that module but we will come back on
those later on.

3.5 Tkinter

Tkinter is the default graphic interface given by python. We decided to use
it because it was providing everything we needed to make our design with
simple tools.

http://matplotlib.org/
https://pypi.python.org/pypi/PyAudio

4 Work done

There are three main modules operational.

4.1 Filters

Using NumPy and SciPy, we have implemented 8 different filters enabling
us to adjust an audio signal as pleased.

o [ow-pass : A low-pass filter is a filter that passes signals with a fre-
quency lower than a certain cutoff frequency and attenuates signals
with frequencies higher than the cutoff frequency

e high-pass : A high-pass filter is a filter that passes signals with a fre-
quency higher than a certain cutoff frequency and attenuates signals
with frequencies lower than the cutoff frequency

e band-pass : A band-pass filter is a filter that passes frequencies within
a certain range and rejects (attenuates) frequencies outside that range

e Notch : Opposite of a band-filter

e all-pass : An all-pass filter is a signal processing filter that passes all
frequencies equally in gain, but changes the phase relationship among
various frequencies

e peaking : band-pass filter that amplifies the frequencies inside the band

e low-shelf : low-pass filter that enables to cut or amplify the kept fre-
quencies

e high-shelf : high-pass filter that enables to cut or amplify the kept
frequencies

4.2 Graphic equalizer

To test those filters, we have created a graphic equalizer that works with wave
files. It basically is an equalizer in which we modify the wanted frequencies
from an audio file with the wanted filters. The equalizer applies those filters
on the audio and creates a modified wave file.

We can visualize both spectrum afterward and compare them to be sure that
the filters do the correct things.

4.3 Live equalizer

The final goal of the project was to create a live equalizer, which is actually
going to be used inside the hearing aid device.
We used the work we had previously done on the graphic equalizer to get

our live equalizer working. It parses an xml configuration that has been
set previously by the user depending (or not) of his audiogram. Once the
configuration is loaded, the software applies the needed frequencies to the
signal and the output can be heard live by the user.

GUI Sonotone

== = =
= [| | =
= =] e .| =
3.2dB 0.0dB 6.7 dB 4.1dE 74dB 0.0dE 44dB 0.0dB 5.0dB 0.0dB 6.9 dB 0.0dE
64 Hz 125Hz 250 Hz 500 Hz 750 Hz 1000 Hz 1500 Hz 2000 Hz 3000 Hz 4000 Hz 6000 Hz 8000 Hz
[Advanced | Reset Save

Figure 1: Basic mode

It is only possible to choose the frequencies to increase with the basic mode. A peaking
filter will be applied.

GUI Senctone

B L] .
= | i o]
=] =) . 128 [
3.2dB 0.0dE 6.7 dB 41dB 74dB 00dB 44 dB 0.0dE 5.0 dB 00dB 6.9 dB 0.0dB
B4 Hz 125 Hz 250 Hz 500 Hz 750 Hz 1000 Hz 1500 Hz 2000 Hz 3000 Hz 4000 Hz 6000 Hz 8000 Hz
: Advanced | Reset | ‘ Save |
|Peak|| V‘ |Peak|| V‘ |Peaku V| ‘Peaku \'| ‘PEEkiI V| Peak|||v |PEak|| V‘ |Peak|| \f‘ |Peak\| V| ‘Peaku V| ‘Peakn V| ‘Peaku V|
0.717 o717 o7 o717 o1z [Allpass [o717 [o717 0717 o717 o7 o7
Bandpa
Highpa:
Highshell
Lowpass
Lowshelf
MNotch

Figure 2: Advanced mode

With the advanced mode, users can not only choose the frequencies to modify, but also
the type of filter to be applied and the width of the filter.

5 Evolution

In the future, we thought of a few things that could be either added or
improved.

1. The user interface could be improved in the future. A live overview
of the filters applied could be added to improve the user experience.
With such a feature, the user would be able to visualize how the signal
is actually modified by the filters he decided to apply.

2. Every filters could be improved in the future. As for now, our filters
are not as good as professional filters. They are efficient enough for
our live equalizer but we still observe saturation and interference on
some frequencies. That could be fixed by creating some new filters to
apply after our current filters and hence, it is a possible evolution.

3. A feature that apply the correct filters directly from an audiogram
could be added as well. The raw audiogram would be given to the soft-
ware and the correct filters would be applied automatically to create
the "perfect" correction without having to touch yourself the frequen-
cies and filters.

6 Problems encountered

1. Signal processing theory : That probably was our main issue during

this project. To implement our filters and apply them properly on
different signal to obtain a coherent result, we needed a good under-
standing of signal processing.
As we were following the signal processing course at the same time of
the project, we did not have the needed knowledge as fast as we wanted
to. That held us back for a long part and once we had all the needed
elements, the project started to develop much faster.

2. In the initial requirements of the project, we were to use Kivy for the
user interface. We took some time to try to understand how it worked
but it happened to be too complicated to use for what we needed.
Therefore, we decided to use Tkinter instead which is easier to get
familiar with and good enough for what we planned to do for the user
interface.

3. We faced some serious problems with the sound acquisition from a
microphone for the live equalizer. To digitize the data from the micro-
phone, we use a callback function from pyaudio. That function digitize
the data on a C basis (as a char string) and has to be converted in in-
teger to be processed in python. Once those data have been processed,

it has to be converted back to C data in order to get an output signal.
It took some time to understand how the data had to laid out in order
to get a correct output signal.

4. When sound is captured with the microphone, there are interference
and saturation independent to the filters we apply to the signal. How-
ever, we are not quite sure of where the problem is coming from. It
could be coming from the microphone, from the python modules or
even from our filters. Unfortunately, we have not been able to de-
termine the source of the problem and it remains unsolved for the
moment.

7 Conclusion

We chose this project out of all the others because it was an innovative
project that could led to an actual prototype that would be used for pa-
tients. Even though we encountered a few issue during the development of
the project, we managed to steer the project toward the expected outcome
that was an functional software to be implemented in hearing aid devices.
This project is upgradable as some features could be improved or added.

In the end, during this project, we have acquired a good overall knowledge
of signal processing and we learnt python that was a new language for us.

	Introduction
	Specifications
	Technologies and tools used
	NumPy
	SciPy
	Matplotlib
	Pyaudio
	Tkinter

	Work done
	Filters
	Graphic equalizer
	Live equalizer

	Evolution
	Problems encountered
	Conclusion

