POLYTECH
GRENOBLE

2017 - 2018

UNIVERSITE
Y Grenoble

(X)

4 Alpes

RICM4 PROJECT
RobAIR Tweet

JEAN Jordan, EZ-ZINE Najwa

Abstract

RobAIR is an open source and low cost telepresence robot which aims to virtually
reproduce a human presence. It can have a lot of uses such as remotely visiting a museum
or remotely taking a course. Our project consists of adding a feature to RobAIR which
allows it to take pictures using its embedded camera, and then post it on twitter with a text
message. We also have to take into account the user experience and the image rights.
Pictures have to be posted on social networks after confirmation by the person who
appears on it. Many extensions could be considered such as face detection and motion
detection. This feature could give an international dimension to the RobAIR project and
promote it during public events such as Open Days.

Abstract

Technologies and achievements
WebRTC
Twitter API
WebSocket
Face tracking
Bootstrap
Timer

Project management

Conclusion

0 N oo bdhbdAbA2DE N

1.Technologies and achievements
e WebRTC

WebRTC' is a free open source project that provides web browsers and mobile
applications with real-time communication (RTC) via simple application programming
interfaces (APIs). It allows audio and video communication to work inside web pages by
allowing direct peer-to-peer communication, eliminating the need to install plugins or
download native apps. RobAIR video communication is based on WebRTC. We had to study
this technology in order to create a taking picture service. A button on both client and server
interfaces calls a function which capture the current picture of the video stream.

Twitter

What's up? imessage

RobAIR interface with twitter container

e Twitter API

The twitter API? provides services to make authenticated requests to the Twitter
platform and makes RobAIR able to post text messages and pictures on twitter. We used
the Twit® NodeJS library to use this API. First, the content of the tweet, meaning the picture
and the text message, are sent to RobAIR NodeJS server using a POST request. Then the
server use the Twit library to post the tweet.

e WebSocket

WebSocket* is a computer communications protocol, providing full-duplex
communication channels over a single TCP connection. Before posting a picture on twitter

' https://en.wikipedia.org/wiki/WebRTC

2 https://developer.twitter.com/en/docs

3 https://github.com/ttezel/twit

4 https://en.wikipedia.org/wiki/WebSocket

https://en.wikipedia.org/wiki/WebRTC
https://developer.twitter.com/en/docs
https://github.com/ttezel/twit
https://en.wikipedia.org/wiki/WebSocket

we need to ask permission to the persons who have been photographed. To do so we need
to have a connection between the NodeJS server and the web browser on RobAIR to send
an alert on RobAIR interface. We used websockets to implement this solution as described
on the following figure. When the server receive a picture and a text message from the
client or the server, it send a message to the RobAIR browser to ask permission to post.
Depend on the user answer, the browser replies OK or not OK for tweeting.

/— ~ TCP WebSocket o~ \

askTweet
- Web Browser
NodeJS Server TweetOK / NoTweet (Interface)
__________ Tweetposted

e Face tracking

To put in place a face tracking system we used the tracking.js library. This library
offers countless features, and easy to use tools, all that without having your processor go
into overdrive. Basically, the library was chosen for the improvements it can offer and its
fitting to RobAIR requirements.

How did we put it in place?

To make it simple the library, and more precisely the face detection feature, uses an
object called a tracker. You simply tell the tracker to track a face and collect the events.
When a face is detected, we set the text, message wanted in the dedicated area as shown
below. (“Hey you! Wanna take a picture?”)

Twitter

- Hey, you! Wanna take a picture?

e Bootstrap

Bootstrap one of the most popular project on GitHub, is a framework developed by
Twitter. Based on HTML, CSS, SASS and JavaScript, it allows you to create design for
websites but also web applications.

We wanted to establish a more formal dialog with the user when tweeting. Our first
solution used the JavaScript window prompt method. When tweeting, a message was
displayed, allowing you to tweet, to customize your tweet post message and confirm it.

You're about to tweet

| What's up ?|

Annuler

However, with such a method we encountered several setbacks.

As a major setback, it was impossible for the user to check the picture before
posting, as the prompt function stopped the background execution and asked to be treated
first. Only after posting, meaning after treating the prompt, could the user see its picture
displayed in the twitter container.

As a minor setback, the prompt wasn’t really user-friendly, the interface wasn't very
pleasant, several weaknesses that eventually led to a poor tweeting experience.

We came up with another solution : deleting the prompt method and adding a
textarea to type the message. The user would also be able to see the post result as a text
displayed overlapping the picture. At this point we had no problems with undisplayed image
but the overall tweeting experience was still poor.

That's when we discovered bootstrap and more precisely its JavaScript modal®
plugin that allowed adding dialogs and custom content. In order to implement it, we
adapted an already existing code (see varying modal content section of 5th note). We
added a canvas to draw the image taken and 2 buttons to tweet or cancel. Bootstrap
provide us with several style of buttons, we took advantage of the blue color of the info
class button that’s similar to the twitter color. But also of the red color of the danger class
button to cancel the tweet.

5 https://getbootstrap.com/docs/4.0/components/modal/

New message to @mdo X

Recipient:

@mdo

Message:

e Timer

We wanted to have a countdown displayed when clicking on the button to take a
picture. It would give 5 seconds to the user to prepare its picture. To implement this, we
started from code® found on stackoverflow, by Tom Koker. We then customized it to trigger
the tweeting function and dynamically set the text.

2.Project management

« Methods

To manage this project we used one of the most famous agile methodology :
SCRUM. Guided by this method, we choose to deliver our product in an incremental and
iterative way. However due to the size of our team, we had to adapt the method, implying
both members somehow played more or less every role needed. Stand-ups and all sorts of
meeting advised by this method were also adapted to the size of our team, meaning they
weren't as formal.

Each sprint lasted one week and each time we started by asking each other what we
were going to do and who was responsible for what. Of course, we also evaluated the
difficulty of each goal set. During the process, we took time to have a sort of stand up while
sitting to check if we were going to make it and if everything was going on well. After
reviewing, we took a break and took a deeper look at what had been made and how it
could’'ve been improved.

Throughout the process, we were able to adapt and put in place our tutors requests
without overwhelming ourselves with unbearable loads of work.

8 https://stackoverflow.com/questions/31106189/create-a-simple-10-second-countdown/31106229

o Setbacks

o Installation of RobAIR : Despite having a detailed guide in the README of the
project, we encountered several problems when installing RobAIR, including
missing some modules, version problems, etc.

o Little to no experience with languages required : The general architecture of
the project was somehow complex but the major setback was not knowing
most of the languages or technologies used. We didn’t know anything about
the JavaScript language, implying it was very hard to, at first, understand
how the part we had to work on worked. During our training, we happened to
work with HTML and CSS. But as they weren't part the main purpose of the
project, our knowledge in this domain remained little.

3.Conclusion and ideas for the future

This project was the opportunity to take part in a famous project and as an
introduction to the robotic world, it allowed us to get a broader view of Computer Sciences.
We end this project with brand new and sharpened skills as we have learned a new
language : JavaScript but we also gained tremendous experience with web technologies.
Finally, we learned how to quickly adapt to an unfamiliar environment. We also were lucky
enough to be able to work at the Fablab in direct contact with the main contributors to this
project and got a deeper understanding of the initial project.

The work we provided makes it very easy to now take pictures. New features using it
could be implemented.

The same goes for social networks. We mainly worked on twitter but other social
networks could be used as a further improvement. Unfortunately, posting on Instagram was
one of our goals but for economical reason they disabled this feature.

As previously stated, tracking.js offers countless features such as games, the
possibility to draw on the canvas and these could be developed in the project.

Finally, tracking.js has a pretty low accuracy, when trying to detect faces.

