

Morgan Bidois, Laurène Guelorget, Nicolas Husson, Thomas Nunes et Simon Planès

> 27 Mars 2014 Polytech' Grenoble - RICM5

Introduction

- Projet innovant de fin d'études
- 5 membres de RICM5
 - 3 de l'option Communication Multimédia
 - 2 de l'option Systèmes et Réseaux
- Chef de projet : Nicolas Husson

Plan de la présentation

- 1 Présentation du projet
- 2 Organisation du projet
- 3 Réalisations
- 4 Bilan du projet

Plan de la présentation

- Présentation du projet
 - Notre projet
 - Cahier des charges
- 2 Organisation du projet
- Réalisations
- 4 Bilan du projet

Notre projet

Introduction

But du projet : améliorer l'accessibilité et l'utilisabilité du campus, et centraliser les informations.

Réalisation de différents outils :

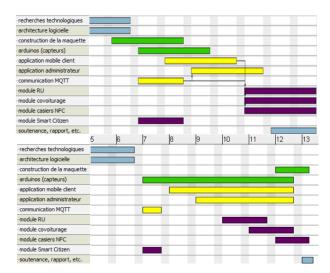
- Application mobile de réalité augmentée (AR);
- Application administrateur;
- Application super-administrateur;
- Maquette du campus de Grenoble.

Cahier des charges

Les ambitions du projet :

- Application mobile client AR
- Application/site web administrateur
- Intégration de capteurs à Arduino
- Construction de la maquette
- Fonctionnalités :
 - RU : open data et crowdsourcing
 - co-voiturage
 - projet RICM5 casiers NFC
 - projet RICM4 Smart Citizen
 - projet RICM4 COQP

Plan de la présentation


- 1 Présentation du projet
- 2 Organisation du projet
 - Méthodologie Agile
 - Diagramme de Gantt
- Réalisations
- Bilan du projet

Méthodologie Agile

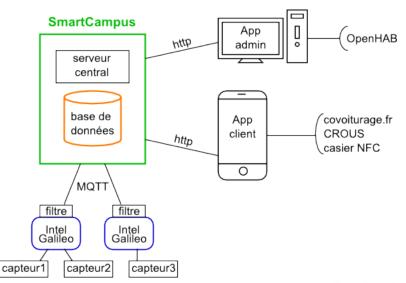
Méthodes agiles respectées :

- Scrum Master fixe
- Sprint : 1 semaine
- Poker planning

Diagramme de Gantt

Plan de la présentation

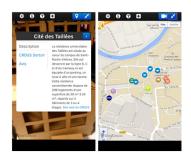
- Présentation du projet
- 2 Organisation du projet
- Réalisations


- Technologies utilisées
- Architecture globale
- Application client
- Administration
- Intel Galileo
- Maquette
- Rilan du projet

Technologies utilisées

Architecture globale

Application client


Introduction

Le but de cette application est de permettre à l'utilisateur d'accéder à plusieurs types d'informations :

- Des infos de crowdsourcing;
- Des infos générales sur les bâtiments et objets;
- Des infos dynamiques;
- Des données de capteurs.

Application client

- Deux interfaces
 - Réalitée augmentée
 - Carte du campus
- Informations contextuelles
 - au clic
 - à la détection de QRcode

Administration

- Application admin
 - adaptée à chaque admin
 - interface OpenHAB des bâtiments
 - accès aux capteurs et actionneurs
- Application super-admin
 - gestion de la base de données

Intel Galileo

- Nouvelle carte Intel
- Création d'un OS adapté
- Portage de JAVA/OSGi et MQTT
- Gestion de capteurs
- OpenHab

Maquette

- Maquette du campus de Grenoble
- Du bois et de la moquette
- Differents éléments :
 - diverses écoles et universités
 - un restaurant universitaire
 - une résidence universitaire
 - des boutiques et un bar étudiant
 - un parking et des terrains de sport

Maquette

- Design des plans
- Maquette de 6 m^2
- Découpeuse laser du LIG
- Bâtiments équipés de capteurs
- QR codes sur les bâtiments

Plan de la présentation

- Présentation du projet
- 2 Organisation du projet
- Réalisations
- 4 Bilan du projet
 - Objectifs
 - Perspectives d'évolution
 - Difficultés rencontrées
 - Apports techniques et personnels

Objectifs

- Application mobile client AR
- Application/site web administrateur ✓
- Intégration de capteurs Arduino
- Construction de la maquette ✓
- Fonctionnalités :
 - RU : open data et crowdsourcing ✓
 - co-voiturage ✓
 - projet RICM5 casiers NFC ✓
 - projet RICM4 Smart Citizen ✓
 - projet RICM4 COQP X

Objectifs – Extensions

- Application multi-langues
- Système de commentaires
- Smart parking
- Informations sur le tram

Perspectives d'évolution

- Modules complémentaires : météo, horaires de cinéma, etc.
- Ajouter des langues (langues asiatiques)
- Capteurs pour détecter les fenêtres ouvertes
- Détection par position GPS + boussole
- Plus d'informations provenant d'Open Data

Difficultés rencontrées

- Nouvelles technologies
- Paradigme de programmation différent
- Emplois du temps différents (projet biométrie et IAE)

Apports techniques et personnels

- Systèmes embarqués (Galileo)
- Programmation événementielle
- Découverte de l'IoT
- Projet conséquent en groupe

Remerciements

Introduction

L'équipe SmartCampus tient à remercier :

- Nicolas Vailliet (Intel);
- Didier Donsez;
- Jérôme Maisonnasse (LIG);
- Amr Alyafi (LIG).

Questions

Merci de votre attention, avez-vous des questions?

