LECHEVALLIER Maxime RICM4
BUI David
OUNISSI Sara

RealTimeSubtitles report

Situation :

The department of the disabled students, at the UGA, is aiming to help disabled
students to follow a course autonomously. To do so, they participate regularly to various
projects as consultant, to ensure the accessibility of workspaces and of education facilities or
to improve the ergonomics of educational interfaces used by people with all types of
disabilities. In this context, we have been ask to develop an application with GoogleAPI
speech to transcript teacher speech to subtitles.

Topic :

The aim of our project is to make easier the understanding of a course by partially
deaf students. In order to achieve this, using GoogleAPI Speech, we had to develop an app
that transcrip in live a teacher speech on his slides as subtitles. However, the subtitles are
not always accurate, due to the API. To correct this problem, we had to set a collaborative
HCI that allows students to correct misinterpreted words. We save the subtitles in a final file
to keep track of the course linked to the slides.

Goals :

The main target of the application is to find the good way to implement the
collaborative HCI for the correction of the transcript, by setting a scoring system. The word
that have the highest score is more likely to be true. In addition, we also have to manage the
two different interfaces : the teacher’s one and the student’s one. To avoid an abusive use of

the application by disruptive students, we have to restrict permissions for unlogged people.

Technologies used :

e Google API Speech to transcript in live teacher's comments. It is a
free APl Speech designed by Google. There are some good tutorials online
for new users. However, the API isn’t designed for long talk, but more for
short queries. After different tests in various conditions we noticed that the
APl isn’t reliable and crashes easily.

e Reveal.js to program the teacher presentation, it allows teachers to
do elegant and simple slides in HTML. We can get events easily using
javascript. We can add reveal sections in an HTML page and follow the
course while correcting the subtitles on the right side.

43

HTML 33 e HTML5, CSS3 and JavaScript to program the basis of the app. These
E are three programming language that we must use for web app. The
structure of our app needs HTML, the dynamic part is implemented due to

JavaScript and the layout with CSS.

e Socket.io used at first place to communicate between the API and the
corrective collaborative HCI used by students. For example socket.io allows
users to concurrently edit a document and see each other's changes.

e Meteor, a framework allowing us to have dynamic pages and to
communicate between the different interfaces much more easier than using
socket.io. Many packages exist for meteor, we found them on
https://atmospherejs.com/ , as accounts-ui for login form ...

METE \R

B e Bootstrap, a package included in meteor, very useful for layout. We are
not expert in CSS, so Bootstrap help us a lot to have a nice interface. Navbar,
Bootstrap buttons, caroussel...

https://atmospherejs.com/

Work done :

From the start to half-time project we used Jquery, Socket.io and Reveal.js for the
whole project. We had the speech recognized by Google Speech parsed into the app and
could send it to a single user. When we had to implement MVC pattern and make a
distributed app, it became suddenly less easy. The following picture is what we had at the
half-time project, the interface is minimalist but we could at that moment get the results of
Google Speech.

Client

Entete

i

5: menu vertical a gauche, (fausses) colonnes de méme hauteur, largeur fluide

Bonjour ¥ |je v |fais ¥ |un v | test ¥ lest-ce que | c'était ¥ |ca v |va er ¥ [assez longtemps pour | que ¥ |je v
puisse ¥ | montrer ¥ |ce ¥|qui ¥|se ¥|passe ¥

With our basics knowledge of database learnt at Polytech, we couldn’t figure out how to
make a database and manipulate the data. From there we have decided to start from scratch
and use Meteor.

The next picture is showing how we manage to separate the work and make it faster
to develop. Meteor allows a lot of things because everything is dynamic.

RealTimeSu

btitles
' B | *
] : @ _ e e e s
.metear .uploads client img lib public sERvEr init.js
|_ =y = = L: rDuter.js EREﬂTimESubtitles.js
Jd & £ 5
temnplates MAIN.C55 maen.himl main.s
about
accueil
APISpesch
displayCourse
displayNote
dizplayShide
displayWerd

displayWordMNoteSide
header

horme

inchedes

inchew

layout

login

reveal

PR RORBRE

slides

Everything is dynamic with meteor that is why we had to adapt our habits and learn
about how to produce dynamic code. No more static HTML, no more long CSS, everything is
handle by meteor (which is convenient at first). Then is it easy to add packages that we need
for the project : accounts, reveal, css framework ...etc

From that point, we tried to add as many features as possible in a short time : handle
session login, teacher/student version, edit subtitles, collaboration on correcting subtitles.
Here’s what we have achieved :

Live Subfities Cours Avout (SRS login form using package : accounts-ui and
- accounts-password. It is really easy to set, and
accounts-ui give us all the function needed to catch
the name of the user, or if he is connected or not...
RealTim, o W {Hif currentUser})

We set some conditions to our app, features like
adding a course, correcting notes and so one are allowed only for logged users. If the user
isn’t logged he can only see the presentation of the app, and the section about us.

The main goal was to upload the teacher file
corresponding to the presentation he wants to do.
But first we just set a collection with names of

[comse | courses. The user can add a course (hame) and the
Select or create a new course fo contribute courses created by him or by the other students are
displayed as a list.

Sara v
N - o oo jon @ course and become a

Welcome to Live Subtitles ! collaborator blue pencil)
) To removing a course (red bin), the user has to be

[course name] the one who created it (authorization required),
S R B S A a2 others can just join the course but not removing it.

Welcome to Live Subtitles !

= Demo created by Sara at a few seconds ago, 0 collaborators [

Live Subtitles

Cours &

Notes

Demo In Development About Sara -

JE SUIS UN GENIE

HTML PRESENTATIONS MADE EASY

Created by Hakim El Hattab / @hakimel
Oh hey, these are some notes. They'll be hidden in your

presentation, but you can see them if you open the
speaker notes window (hit 's" on your keyboard).

0

Read
ceci est un test pour la démonstration de mercredi
matin

This is how we displayed the presentation reveal.js, with the subtitles on the right side. The
user that have created the course can launch GoogleSpeech and start talking. The API
transcript the speech and display the results next to the current slide. The other users have
to join the course follow it and to collaborate.

Read

ceci est un test pour la démonstration de mercredi
matin

ceci est un test pour la démonstration de
mercredi matin

ceci est un| test o= |pour|a démanstration de

test 0

Test

highest probability.

Users can either watch slides without editing, in the “Read”
mode.

Or they can turn on the editing mode and start correcting
the subtitles. They can insert a word at any place. If a word
is false, they can click on it and add an option to it, then
chose this option.

We can have different correction of the same word,
depending on users. To deal with that, we set up a scored
correction and display the more accurate result. The more a
word is selected in an option form for example, to more
likely it is to be true. So when we go back to the mode
“‘Read” after editing we see the sentence corrected with the

Demo :

Here is an example of presentation. The “Teacher” talked and the sentence has been written
on the right side. The mode “Read” is activated so we just see the sentence.

Live Subtitles Cours \l_, Notes Reveal InDevelopment About Sara~

Read
je teste la diapo 2.3 pour le rapport Wall Street English

BASEMENT LEVEL 3

That's it, time to go back up.

»

2-3

Then we switch to “Edit” mode, and we correct the sentence by adding words and correcting
others.

ive Subtitles Cours Notes Reveal in Development About ara -~
Live Subtitl & s

Je ~ teste la diapo 2.3 pour le ~ rapport ,
Well let's - switch ~ in English

BASEMENT LEVEL 3

That's it, time to go back up.

4

2-3

Finally when we get back to the “Read” mode, we can read the correct sentence.

Live Subtitles Cours \!, Notes Reveal In Development About Sara~x

Read
Je teste la diapo 2.3 pour le rapport , Well let's switch in
English

BASEMENT LEVEL 3

That's it, time to go back up.

2’ N

Problems faced :

Reading documentation take us a long time. We had to understand all the
technologies we were using because we didn’t have any experience in any of them.

First problem we had to deal with was the instability of GoogleSpeech. Often the
transcript was really slow, or stopped completely after just displaying few words. The API
take always into account the context of the sentence so it can correct the transcript while
going on the vocal recognition. When the contexte become to long the API stopped. The use
of the API is more adapted to short sentences lire queries, and not for a continuous course.
Moreover, when there is some noise in the room or near the microphone, the API crashed
too.

After that we faced a new problem : how to send the results from the API to the
student’s interface for correction? Our supervisor told us to look at socket.io. After weeks of
reding and testing our program using socket.io we faced new problems. First of them,
socket.io was hard to use, nevertheless we had a functional release of our project using
socket.io. Secondly, at this step of the project we had to think about a way to save our data.
We were handling table of table of table, which was heavy. We also thought about having a
login form, with a database for users... We started to draw some database but our
knowledge in SQL were too limited so we lost some time on it.

To find a solution to our problem we asked for some advices to our teacher Didier
Donzer. He recommended us to look at meteor, which is a framework easy to use, and it will
help us to communicate between the two interface and to settle the correction of a student
on the other students. Furthermore, Meteor had its own database MongoDB, and other
packages downloadable on atmosphere. Thus, we had to change the main technology we
used in our project three weeks before its end. We first had to spend some time reading
about meteor and testing some function. After that, we had to program again our app with
meteor. It was much more easy than using socket.io, and a lot of useful packages were
available to help us. However, it was hard for us to handle this technology in a short period
of time. We spent a lot of time on small bugs. We couldn’t achieve all our objectives.

The last problem we want to talk about is a problem of management. The relation between
the customer and the developer. We didn’t had the time to see our supervisor regularly, we
asked for some meetings but we worked a lot alone on our understanding of the subject.
But, almost at the end of the time we had for the project, in a meeting with our supervisor he
realized that our app doesn’t appear as he wanted to. The problem wasn’t on the running of
the app but more on the interface with the user. During the last week we have tried to match
with his expectations with some revisions. The thing is that we will remember, in our futures
projects, to meet regularly with the customer to show him the progress of our work. This will
avoid a bad surprize at the end of the project if it is too far different from what it was
expected.

Potential improvements

Security issue : we tried to add security mechanics to the app but obviously not enough to
deploy the app to the public. Links between pages are not secured and there is no backup
for the database.

Live Subtitles =3 A crucial improvement could be to add a
File Uploader to show it with Reveal.

Upload your Reveal Actually, the slides are pure HTML and not

.pdf or .jpeg. This is not usable for lamba

users, the HCI at this moment is not
optimized. An easy way to make it possible
is to parse the file into multiple images so
Reveal.js can interpret them to slides then

add the subtitles properly.

We have to use a terminal to use our app for now. Meteor is rebuilding each time we launch
the app. To make it usable for anyone, we have to deploy it. This part need a little bit more
time to accomplish since it implies having a distant server for the Database.

A major and necessary upgrade for the actual app would be using another Speech
Recognition System because we are very limited by Google Speech : time listened is short,
accuracy is low, modding is hard.

Conclusion

We had good times working in group on this project. It was the first time for all of us
designing a web app, but more than this it was the first time we worked on a concrete project
with a real and useful purpose. We have made our code well organized allowing us, easy
review or improvement, whether by us or by any other interested group. It is a project we
really enjoyed, and we hope to continue working on it to make it totally functional and
effective. Furthermore, we already know what we can improve and we have found some
suggestions to do so.

This first experience in Web application development will definitely help us in our
future dev app projects.

