
Lucas CHALOYARD - Elias EL YANDOUZI

Implementing services
upon Quark
AIR Project - Defense

18/03/2022

Project’s holder: Olivier Gruber

Project objectives
From understanding to
implementing

Group service TOM
Well-known use case

Does stress the layers below

Self-testable

Used by TOM for dynamic group

Discovering code base and concepts

Implement use cases upon Quark

Validate concepts and implementation
of Quark

2

Quark, the bare-metal platform

Software
architecture
A matter of layers

Network Interface

Bus

Core

Hardware

3

Network Interface

Bus

Core

• Deals with memory management

• Event-oriented paradigm

• An event-pump per core

• Run-to-completion

Software
architecture

Hardware

4

Network Interface

Bus

Core

• Provides access to network

• Enables frames transmission

• Brings the concept of nodes and
network addresses

Software
architecture

Hardware

5

Network Interface

Bus

Core

Two key concepts

Software
architecture

Hardware

Channel / Record Protocol / Query

An event-driven socket

Record flow

FIFO / Lossless

Defined by ID and version (instead of port)

Recorded on a node

Matching protocols give channels

6

Two key concepts

Software
architecture

An event-driven socket

Record flow

FIFO / Lossless

Defined by ID and version (instead of port)

Recorded on a node

Matching protocols give channels

Core

NI

Bus

Node

Core

NI

Bus

Node

Protocol A

Protocol Y
Protocol Z

Protocol P

Protocol Y

Protocol Q

Channel / Record Protocol / Query

6

Two key concepts

Software
architecture

An event-driven socket

Record flow

FIFO / Lossless

Defined by ID and version (instead of port)

Recorded on a node

Matching protocols give channels

Core

NI

Bus

Node

Core

NI

Bus

Node

Protocol A

Protocol Y
Protocol Z

Protocol P

Protocol Y

Protocol Q

Channel

Channel / Record Protocol / Query

6

Execution
Architecture
A multi-target project

• Quark is emulated in a Linux process

• Every processes can be interconnected

7

Linux process

Linux process

Linux processLinux process

Linux process

Execution
Architecture
A multi-target project

Software
Switch

Core

NI

Bus

Node

Core

NI

Bus

Node
Core

NI

Bus

Node

Core

NI

Bus

Node

Core

NI

Bus

Node

• Quark is emulated in Linux process

• Every processes are interconnected

Distributed system example

7

A look on the carried work

Group service
What is it?

• Groups are meeting place for peers

• A special peer by group - coordinator

• Get notified of joining peer

• Notify the group service of leaving peer

• Fault tolerant

8

Group service
Development phase

• Design phase

• Difficulty to separate the layers

• Asynchronous environment

• Implementation phase

• Coherency between API and environment

• Conclusion

• Features implemented and tested

• Well fitting API

9

Group service
Demonstration 1
Group creation and join

Pair 1

Linux process

Pair 2

Linux process
Pair 3

Linux process

Coordinator

Linux process

Group
Server

Linux process

Pair 1

Linux process

Pair 2

Linux process

Pair 3

Linux process

Coordinator

Linux process

"BasicGroup1""BasicGroup0"

10

Group service
Demonstration 2
Fault tolerance

Pair 1

Linux process

Pair 2

Linux process

Coordinator

Linux process

Group
Server

Linux process

11

Totally Ordered
Multicast
What is it?

• A well-known use case which stress
layers below

• Designed to be fault tolerant

• Self-testable

12

Totally Ordered
Multicast
What is it?

• A well-known use case which stress
layers below

• Designed to be fault tolerant

• Self-testable

TOM

Appli

Quark

Group

Appli

Quark

TOM

Can rely on Group service
12

Totally Ordered
Multicast
Development phase

• Design and discussion with tech lead to
define TOM semantic, including faults

• Incremental implementation

Peer connection Static group Static group including faults Dynamic group

Implementation timeline

13

Totally Ordered
Multicast
Demonstration

Static group - no fault

Static group - fault included

14

Totally Ordered
Multicast
Demonstration
Static group - no fault

1. Connection phase

2. Message delivered according total order

15

Totally Ordered
Multicast
Demonstration

Static group - no fault

Static group - fault included

Totally Ordered
Multicast
Demonstration

1. GoodBye0 indicates peer[0] death

2. GoodBye0 message reemitted

Static group - fault included

16

Totally Ordered
Multicast
Demonstration

1. GoodBye0 indicates peer[0] death

2. GoodBye0 message reemitted

Static group - fault included

16

Totally Ordered
Multicast
Demonstration

1. GoodBye0 indicates peer[0] death

2. GoodBye0 message reemitted

3. Death doesn’t stop delivery

Static group - fault included

16

Project’s environment

Technologies and
language
80’s style environment

• C bare-metal, no library

• GDB for debugging, Valgrind for memory

• Makefile inspired by Linux kernel

17

Project
management
From organisation to stats

18

18

Project
management
Internal organisation

18

• Bi-weekly meetings

• Use of git

• Personal branches

• Pull request to merge fix

Conclusion
Lessons learned

• Quark’s concepts validated and
implementation strengthened

• Understood how much a design is valuable

• Dealt with an irregular paradigm and learnt
a new way of thinking

19

