Proj-2014-2015-Regie Video Autonome Et Mobile Multicamera/SRS

From air
Jump to navigation Jump to search

The document provides a template of the Software Requirements Specification (SRS). It is inspired of the IEEE/ANSI 830-1998 Standard.


Read first:

Document History
Version Date Authors Description Validator Validation Date
0.1.0 TBC BODARD Christelle, QIAN Jean, ZOMINY Laurent TBC TBC TBC


1. Introduction

1.1 Purpose of the requirements document

This Software Requirements Specification (SRS) identifies the requirements for the Autonomous and Mobile Video Control.

1.2 Scope of the product

This project is based on a robot named RobAir, supplied by a camera. The purpuse is to enable the robot to recognize a specific person and follow him; the list of people to be recognized will be sent by an Android app.

1.3 Definitions, acronyms and abbreviations

  • Android: The most widely used mobile OS. Here it is used to send image or video frame to the robot.
  • Face recognition: To automatically identify or verify a person from a digital image or a video frame from a video source
  • OpenCV: It is a library of programming functions mainly aimed at real-time computer vision, developed by Intel Russia research center in Nizhny Novgorod, and now supported by Willow Garage and Itseez.
  • Python: It is a widely used general-purpose, high-level programming language. Its design philosophy emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than would be possible in languages such as C++ or Java. Here it is used to implement the face recognition using OpenCV.

1.4 References

1.5 Overview of the remainder of the document

2. General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

3.Specific requirements, covering functional, non-functional and interface requirements

  • document external interfaces,
  • describe system functionality and performance
  • specify logical database requirements,
  • design constraints,
  • emergent system properties and quality characteristics.

3.1 Requirement X.Y.Z (in Structured Natural Language)

Function: Learn someone's face to be able to recognize this person and follow him.

Description:

Inputs:

Source:

Outputs:

Destination:

Action:

  • Natural language sentences (with MUST, MAY, SHALL)
  • Graphical Notations : UML Sequence w/o collaboration diagrams, Process maps, Task Analysis (HTA, CTT)
  • Mathematical Notations
  • Tabular notations for several (condition --> action) tuples

Non functional requirements:

Pre-condition:

Post-condition:

Side-effects:

4. Product evolution

5. Appendices

6. Index