Difference between revisions of "Project 2014-2015-CannonBall/developer guide"

From air
Jump to navigation Jump to search
Line 44: Line 44:
 
http://www.mindmeister.com/fr/172030358/la-boite-outils-du-veilleur-2-0
 
http://www.mindmeister.com/fr/172030358/la-boite-outils-du-veilleur-2-0
   
* The idea of using a rasberry pi for images processing was put away because of a lack of cpu power.
+
* The idea of using a rasberry pi for images processing was put away because of a lack of cpu power. Pour se donner un ordre d'idée le core i3 de la tablette Lenovo Thinkpad ....a ajouter des chiffre par rapport à la tablette
- The L'idée d'une raspberry pi pour le traitement des images est ecarter du à un maque de puissance processseur. Pour se donner un ordre d'idée le core i3 de la tablette Lenovo Thinkpad ....a ajouter des chiffre par rapport à la tablette
 
   
 
- L'idée d'une raspberry pi pour la diffusion du flux video sur un serveur local et traitement par une machine tiers n'est pas concevable en raison de la latence de transmission du flux. Pour ce donner un ordre de grandeur : si la latence est d'1 seconde, une voiture à 30 km/h effectuerai 5 m avant que la machine tiers effectue son traitement.
 
- L'idée d'une raspberry pi pour la diffusion du flux video sur un serveur local et traitement par une machine tiers n'est pas concevable en raison de la latence de transmission du flux. Pour ce donner un ordre de grandeur : si la latence est d'1 seconde, une voiture à 30 km/h effectuerai 5 m avant que la machine tiers effectue son traitement.
Line 54: Line 53:
 
Taille réduite, batterie embarquée.
 
Taille réduite, batterie embarquée.
 
Le principale souci qu'ont rencontré nos précédesseur de l'Ensimag est que une caméra externe ne peut être exploitée par le système android. -> A vérifier car ce qui était vrai il y a 1 an, ne l'est peut être plus.
 
Le principale souci qu'ont rencontré nos précédesseur de l'Ensimag est que une caméra externe ne peut être exploitée par le système android. -> A vérifier car ce qui était vrai il y a 1 an, ne l'est peut être plus.
 
   
 
= Technologies chosen =
 
= Technologies chosen =

Revision as of 02:01, 27 January 2015

Preambule

Configuration

Setting up the project

  1. Download the project from our Github repository Github
  2. Download and install Visual Studio (we used the 2013 version)
  3. Launch CanonBall\QRCode\QRcode.vcxproj with a double click
  4. Adding the includes
    • Add these 3 environment variables (Please refer to your OS documentation for any further indications). If you use Windows : Right click on Computer -> Properties -> Advanced properties -> Environment variables -> Add
      • CANNON_BALL path_to_your_cannon_ball_project
      • PATH $(CANNON_BALL)\QRcode\dll\mosquitto
      • PATH $(CANNON_BALL)\QRcode\dll\opencv\build\x86\v12\bin
    • In Visual Studio :
      • Add the include path : Right click on CannonBall project (Solution Explorer panel) -> Properties -> C/C++ -> Additional Include Directories : $(CANNON_BALL)\QRcode\include\opencv;$(CANNON_BALL)\QRcode\include
      • Add the include path : Right click on CannonBall project (Solution Explorer panel) -> Properties -> C/C++ -> Additional #using Directories : C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1\ExtensionSDKs\Microsoft.VCLibs\12.0\References\CommonConfiguration\neutral;C:\Program Files (x86)\Windows Kits\8.1\References\CommonConfiguration\Neutral. Please ensure that the path to Windows.pltfiurmd and windows.h is correct through windows explorer
      • Add the include path : Right click on CannonBall project (Solution Explorer panel) -> Properties -> Linker -> General -> Additional Library Directories : $(CANNON_BALL)\QRcode\lib\opencv;$(CANNON_BALL)\QRcode\lib
      • Add the include path : Right click on CannonBall project (Solution Explorer panel) -> Properties -> Linker -> Input -> Additional Dependencies :


opencv_calib3d249d.lib
opencv_contrib249d.lib
opencv_core249d.lib
opencv_features2d249d.lib
opencv_flann249d.lib
opencv_gpu249d.lib
opencv_highgui249d.lib
opencv_imgproc249d.lib
opencv_legacy249d.lib
opencv_ml249d.lib
opencv_nonfree249d.lib
opencv_objdetect249d.lib
opencv_ocl249d.lib
opencv_photo249d.lib
opencv_stitching249d.lib
opencv_superres249d.lib
opencv_ts249d.lib
opencv_video249d.lib
opencv_videostab249d.lib
mosquittopp.lib
mosquitto.lib

Technology watch

http://www.mindmeister.com/fr/172030358/la-boite-outils-du-veilleur-2-0

  • The idea of using a rasberry pi for images processing was put away because of a lack of cpu power. Pour se donner un ordre d'idée le core i3 de la tablette Lenovo Thinkpad ....a ajouter des chiffre par rapport à la tablette

- L'idée d'une raspberry pi pour la diffusion du flux video sur un serveur local et traitement par une machine tiers n'est pas concevable en raison de la latence de transmission du flux. Pour ce donner un ordre de grandeur : si la latence est d'1 seconde, une voiture à 30 km/h effectuerai 5 m avant que la machine tiers effectue son traitement.

- L'idée d'une tour mini et compact (exemple : GB-XM1-3537) est intéréssant mais l'absence de batterie embarqué la rend dépondante d'une source d'energie de 220 Volts

- L'idée d'un téléphone est intéréssant d'un point de vu de la richesse et précision des capteurs (aéromètre, compass, ...). D'autant plus s'il possède un processeur de type tégra offrant une plus grande puissance de traitement des images par opencv. Un processeur ARM ne pourrait suffir par contre. Taille réduite, batterie embarquée. Le principale souci qu'ont rencontré nos précédesseur de l'Ensimag est que une caméra externe ne peut être exploitée par le système android. -> A vérifier car ce qui était vrai il y a 1 an, ne l'est peut être plus.

Technologies chosen

We keep MongoBD database because it present several advantages : http://java.dzone.com/articles/when-use-mongodb-rather-mysql

We keep Node.js for creating a local server from which the tablet can display all the data : We use different modules : socket.io for real time messaging, mqtt for a subscribe/pusblish protocol, mongoose for the interface between the mongoDB database and subscribe? Mosquitto (c++) <=> mqtt (node.js) MongoDB <=> Mongoose (node.js)

In view.html we use bootStrap.min.css which formalize the presentation page

What we have to accomplish

- Finir le prototype de l'Ensimag et le présenter au salon le 18 mars 2015 : - La redirection des metriques et du flux video vers une machine quelconque au travers d'un serveur (Mosquitto, Node.js, Socket.io, Node.js sont les bibliothèques recommandées, cela dit faut voir si y a mieux de nos jours) - Améliorer les algorithmes de déplacement de la voiture. Elaborer un algorithme de convoi entre plusieurs voitures (ne devrais pas être trop dur pour notre génie en algorithmie de notre équipe)

- Nous fûmes rejoint par deux collègues, A.LE JEAN et H.RODRIGUES. De nouveaux objectifs nous serons certainement fixés.

What we want to do

- Passer sous un environnement linux et utiliser un IDE non propriétaire à la place de Visual Studio 2013. - Le langage choisi fut le C++ plus proche de la librairie opencv codée aussi en C++. - Adapter notre programme

What is expected from us to consider

- D'ajouter un shield à l'arduino uno, afin d'améliorer la précision de déplacement de la voiture. Les déplacement de la voiture seraient controllés et corrigé si nécessaire. Un deplacement de 20 degré sur la droite, se résulte par un dépalcement effectif de +- 20 degré sur la droite alors nous devons corriger l'erreur.

Technologies choisies : Nous gardons l’arUco bibliotheque (puissante) basée sur opencv

The risks

- Notre capacité à réutiliser le code de nos prédécesseur pour ne pas repartir from scratch. -