VT2018 XXX: Difference between revisions

From air
Jump to navigation Jump to search
Line 1: Line 1:
=Titre=
=Titre=
[[File:Performance Monitorin.png| Performance Monitoring]]
[[File:file.png| file]]


Apache MXNet est un framework open-source de deep learning, utilisé pour former et déployer des réseaux neuronaux profonds. Il est évolutif, permettant une formation rapide aux modèles, et supporte un modèle de programmation flexible et de multiples langages de programmation (comme C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl, et Wolfram Language).

La bibliothèque MXNet est portable et peut évoluer vers plusieurs GPU et plusieurs machines. Le MXNet est soutenu par des fournisseurs publics de cloud computing, dont Amazon Web Services (AWS) et Microsoft Azure. Amazon a choisi le MXNet comme cadre d'apprentissage approfondi de choix chez AWS. Actuellement, le MXNet est soutenu par Intel, Dato, Baidu, Microsoft, Wolfram Research et des institutions de recherche comme Carnegie Mellon, MIT, University of Washington et la Hong Kong University of Science and Technology.


=Résumé=
=Résumé=

Revision as of 01:40, 19 November 2018

Titre

file


Apache MXNet est un framework open-source de deep learning, utilisé pour former et déployer des réseaux neuronaux profonds. Il est évolutif, permettant une formation rapide aux modèles, et supporte un modèle de programmation flexible et de multiples langages de programmation (comme C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl, et Wolfram Language).

La bibliothèque MXNet est portable et peut évoluer vers plusieurs GPU et plusieurs machines. Le MXNet est soutenu par des fournisseurs publics de cloud computing, dont Amazon Web Services (AWS) et Microsoft Azure. Amazon a choisi le MXNet comme cadre d'apprentissage approfondi de choix chez AWS. Actuellement, le MXNet est soutenu par Intel, Dato, Baidu, Microsoft, Wolfram Research et des institutions de recherche comme Carnegie Mellon, MIT, University of Washington et la Hong Kong University of Science and Technology.

Résumé

Abstract

Synthèse