VT2019 Hadoop MapReduce: Difference between revisions
(Created page with "Hadoop, dont la première version est apparue en 2006, est une technologie très utilisée aujourd'hui dans le domaine du big data. C'est un framework qui regroupe plusieurs m...") |
No edit summary |
||
Line 15: | Line 15: | ||
* '''Worker: ''' La luminosité ambiante est mesurée grâce au capteur de luminosité de l'appareil, c'est grâce à cette mesure que l'outil est capable d'adapter la luminosité de l'image de synthèse pour faire en sorte qu'elle soit le plus "fidèle" possible. |
* '''Worker: ''' La luminosité ambiante est mesurée grâce au capteur de luminosité de l'appareil, c'est grâce à cette mesure que l'outil est capable d'adapter la luminosité de l'image de synthèse pour faire en sorte qu'elle soit le plus "fidèle" possible. |
||
[[File:Fundamentals.png|center]] |
|||
=Cas d'utilisations= |
=Cas d'utilisations= |
Revision as of 10:42, 7 December 2019
Hadoop, dont la première version est apparue en 2006, est une technologie très utilisée aujourd'hui dans le domaine du big data. C'est un framework qui regroupe plusieurs modules qui sont : Hadoop Common, Hadoop Distributed File System, Hadoop Yarn, et Hadoop MapReduce. Pour cet VT2019, nous allons surtout nous intéresser à ce dernier module qui est MapReduce File:Hadoop logo new.svg
Abstract
Pourquoi utiliser MapReduce
Hadoop, whose first version appeared in 2006, is a technology widely used today in the field of big data. It is a framework that groups several modules that are: Hadoop Common, Hadoop Distributed File System, Hadoop Yarn, and Hadoop MapReduce. For this VT2019, we will focus on this last module which is MapReduce
Fonctionnement
Voici les principaux acteurs que nous pouvons retrouver dans les algorithmes de MapReduce:
- User: C'est grâce à différents capteurs comme l’accéléromètre, le gyroscope et la boussole que le kit de développement est capable de positionner l'appareil dans l'espace. Cette reconnaissance est essentielle à la bonne superposition des images de synthèse. L'utilisation de la caméra est aussi importante, car elle permet à l'outil de détecter les "points caractéristiques" (coins d'une table, dossier d'une chaise, etc.). Les points caractéristiques peuvent être calculés de plusieurs façons : calcule des contours des objets de l'image, calcule des changements brusques de direction, etc.
- Master : Le kit de développement est capable de détecter les surfaces (horizontales ou verticales) de notre environnement. Cette fonctionnalité requiert lui aussi l'utilisation de la caméra, un regroupement de points caractéristique est très souvent signe d'une surface plane. Cette fonctionnalité est utile pour savoir si une image peut être appliquée sur une table ou une surface.
- Worker: La luminosité ambiante est mesurée grâce au capteur de luminosité de l'appareil, c'est grâce à cette mesure que l'outil est capable d'adapter la luminosité de l'image de synthèse pour faire en sorte qu'elle soit le plus "fidèle" possible.
Cas d'utilisations
La réalité augmentée est utilisée aujourd'hui dans de nombreux domaines, notamment à des fins professionnelles.