VT2020-OpenAI GPT-3-Fiche: Difference between revisions

From air
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:


= Sources =
= Sources =
[https://docs.pinot.apache.org/
[https://docs.pinot.apache.org/]
https://www.youtube.com/watch?v=cNnwMF0pOJ8]
https://www.youtube.com/watch?v=cNnwMF0pOJ8]
https://www.youtube.com/watch?v=mRkWT_EU99M
https://www.youtube.com/watch?v=mRkWT_EU99M

Revision as of 22:30, 1 December 2020

Appache Pinot

Abstract

«Pinot is a real-time distributed OLAP datastore, built to deliver scalable real-time analytics with low latency. It can ingest from batch data sources (such as Hadoop HDFS, Amazon S3, Azure ADLS, Google Cloud Storage) as well as stream data sources (such as Apache Kafka).

Pinot was built by engineers at LinkedIn and Uber and is designed to scale up and out with no upper bound. Performance always remains constant based on the size of your cluster and an expected query per second (QPS) threshold.» - Documentation officielle de Appache Pinot


Origine

Présentation des Fonctionnalités

Avantages

Limites

Démonstration

Sources

[1] https://www.youtube.com/watch?v=cNnwMF0pOJ8] https://www.youtube.com/watch?v=mRkWT_EU99M https://medium.com/@gowthamy/big-data-battle-batch-processing-vs-stream-processing-5d94600d8103 https://github.com/zzhang5/zooinspector https://github.com/npawar/pinot-tutorial https://github.com/apache/incubator-pinot https://pinot.apache.org/ https://docs.pinot.apache.org/basics/getting-started

Veille Technologique 2020

  • Année : VT2020
  • Sujet : Appache Pinot
  • Slides : Slides
  • Auteur : RUZAFA Rémy