PAGE WIKI ETUDIANTS 2010-11 SERRURE VOCALE: Difference between revisions

From air
Jump to navigation Jump to search
Line 113: Line 113:
#:
#:
Nous devons maintenant appliquer tout cela à notre projet.
Nous devons maintenant appliquer tout cela à notre projet.
Notre système est divisé en 2 parties
Notre système est divisé en 2 parties : acquisition et reconnaissance
# Acquisition
* Une partie appelée acquisition ()
#:
* Une partie appelée reconnaissance ()
# Reconnaissance
#:


== Interface Graphique ==
== Interface Graphique ==

Revision as of 15:10, 3 March 2011

Composition du groupe gache électrique // serrure vocale :

Chefs de projet :

  1. Florian FAUVARQUE
  2. Marc VOLAINE

Membres du groupe "IHM" :

  1. Frédéric DUPIN
  2. Jonathan HARTNAGEL
  3. Cédric MERIADEC
  4. Clément RIGNAULT

Membres du groupe "ELECTRIQUE" :

  1. Frédéric COUDURIER
  2. Anthony DAMOTTE

Membres du groupe "ALGORITHMIQUE" :

  1. Maxime CONQ
  2. Raphaëlle DIDIER
  3. Floriane PIHUIT

Gâche électronique:

Cette partie a pour but d'expliquer et d'illustrer le fonctionnement de la gâche électronique. Des comptes-rendus et documentations supplémentaires sont disponibles en annexe.

Gache électrique pour biométrie
  1. La gâche électrique:
    La gâche électrique provient d'un projet réalisé par les étudiants RICM5 promotion 2010 intitulé : TouchKey.
    • Gache électrique réversible gauche ou droite.
    • Dimension du corps: 160x25x30 en aluminium inoxidable donc garde le même aspect trés longtemps
    • Fonctionne en 10VDC avec une tolérance importante de 20% soit entre 8 volts et 12 volts permettant toujours d'être très adaptable a de nombreuses installations.
    • Température de fonctionnement: de - 15 degrée centigrade à + 50 degrée centigrade
  2. Le circuit électronique:
    Le circuit électronique provient également du projet TouchKey.
    • Contenu : 2 résistances (820 et 220 Ohms), un transistor NPN et l'adaptateur alimentation.
    • Schéma : Schéma électronique
    • Alimentation : est fourni avec le circuit un transformateur courant alternatif 220 - continu 9V.
  3. La conversion numérique/analogique (CAN)
    • Technologies utilisées : JAVA, USB, Port série
    • Sources du code :


Gachette electrique - Cahier des charges / Schéma du montage

Analyse de la parole:

Le but du projet est de permettre à certains locuteurs préalablement enregistrés dans le système d'ouvrir une porte simplement par la parole. C'est ici qu'entre en jeu la phase d'analyse. Avant de commencer le projet, nous avons étudié les TPs de biométrie de l'année dernière ([1]) ainsi que plusieurs compte-rendus de précédents étudiants que l'on nous a fournis. Cela nous fournit ainsi toutes les étapes ainsi que la marche à suivre en ce qui concerne la reconnaissance de locuteurs. Enfin, nous avons vu dans les comptes rendus de TPs que les résultats sont meilleurs lorsque l'on normalise et que l'on détecte l'énergie des signaux, nous ferons de même pour notre projet.

Voici les différentes étapes de la reconnaissance d'un locuteur :

  1. Tout d'abord, nous récupérons un ensemble de voix qui nous servira à créer un modèle du monde. Nous avons utilisé les voix des membres du projet (ce qui nous donne 12 voix : 9 d'hommes et 3 de femmes). Pour cela, nous utilisons un logiciel en ligne de commande sous linux qui se nomme bplay ([2]), et la commande pour enregistrer une voix : brec -r -b 16 -s 16000 -t 60 locuteur.raw : "-b 16" pour préciser le nombre de bits, "-s 16000" pour préciser la fréquence (16kHz) et "-t 60" pour enregistrer 60 secondes de signal. A remarquer également que le fichier enregistré a une extension en .raw ; nous avons choisi cela car c'est le même format que pour les TPs. Nous pouvons également écouter le signal enregistré avec la commande : bplay -b 16 -s 16000 locuteur.raw
    --------------------------------------------------------------------------------------------------------------------------------------
    Pour la suite, il est important de suivre l'arborescence de dossiers utilisée pour le TP :
    • output_files
    • cfg (dossier de config) contenant l'ensemble des fichier de configurations donnés dans le TP
    • gmm (dossier des modèles)
    • lbl (dossier des labels)
    • lst (dossier des fichiers all.lst, world.lst (pointant juste le fichier all.lst), world.weight)
    • ndx (dossier des index)
    • prm (dossier des vecteurs de paramètres, normalisés ou non)
    • LIA_RAL
    • input (dossier qui contiendra les voix de tests)
    --------------------------------------------------------------------------------------------------------------------------------------
  2. Maintenant que nous avons enregistré ces 12 voix (extension .raw), nous allons traiter ces signaux.
    • Première étape, générer les vecteurs de paramètres pour chacun des signaux.
    Pour cela, nous utilisons un outil fourni dans le TP : spro ([3]) qui propose une commande sfbcep -F PCM16 -f16000 -p 19 -e -D -A locuteur.raw locuteur.prm qui va créer un vecteur de paramètres pour le fichier locuteur.raw. Comme nous avons 12 signaux, donc 12 vecteurs à générer, nous allons créer un script csh. Pour cela, nous plaçons tout d'abord dans un fichier all.lst la liste des noms des signaux (noms des locuteurs).
    Et nous écrivons notre script :
    foreach i (`cat all.lst`)
    sfbcep -F PCM16 -f16000 -p 19 -e -D -A $i.raw $i.prm
    end
    • Deuxième étape, normaliser les paramètres de chacun des signaux
    Nous utilisons une nouvelle fois un outil fourni dans le TP : "LIA_RAL" ([4]). Et nous utilisons la commande NormFeat :
    ./LIA_RAL/LIA_SpkDet/NormFeat/NormFeat.exe --config ./cfg/NormFeat_energy.cfg --inputFeatureFilename ./lst/all.lst --debug false --verbose true
    Cette commande crée les fichiers locuteur.enr.prm dans le dossier prm
    • Troisième étape, détecter l'énergie de chacun des signaux
    Pour détecter cette énergie, nous allons utiliser la commande EnergyDetector :
    ./LIA_RAL/LIA_SpkDet/EnergyDetector/EnergyDetector.exe --config ./cfg/EnergyDetector.cfg --inputFeatureFilename ./lst/all.lst --verbose true --debug false
    Cette commande crée les fichiers locuteur.lbl dans le dossier lbl (labels)
    • Quatrième étape, re-normaliser les paramètres
    On utilise une nouvelle fois la commande NormFeat, mais avec un fichier de configuration différent :
    ./LIA_RAL/LIA_SpkDet/NormFeat/NormFeat.exe --config ./cfg/NormFeat.cfg --inputFeatureFilename ./lst/all.lst
    Cette commande crée les fichiers locuteur.norm.prm dans le dossier prm
    • Cinquième étape, apprendre le modèle du monde
    Nous créons ici ce que l'on appelle le modèle du monde, c'est à dire que l'on fait une sorte de moyenne des 12 voix que nous avons préalablement enregistrées. Nous utilisons pour cela la commande TrainWorld qui se décompose en deux commandes :
    ./LIA_RAL/LIA_SpkDet/TrainWorld/TrainWorld.exe --config ./cfg/TrainWorldInit.cfg --inputStreamList ./lst/world.lst --weightStreamList ./lst/world.weight --outputWorldFilename world_init --debug false --verbose true
    ./LIA_RAL/LIA_SpkDet/TrainWorld/TrainWorld.exe --config ./cfg/TrainWorldFinal.cfg --inputStreamList ./lst/world.lst --weightStreamList ./lst/world.weight --outputWorldFilename world --inputWorldFilename world_init --debug false --verbose true
    Cela crée le fichier world.gmm dans le dossier gmm
    • Sixième étape, créer les modèles de locuteurs
    Tout d'abord, nous choisissons les locuteurs qui seront acceptés par le système. Pour chacun d'eux, nous créons un fichier locuteur.ndx dans le dossier ndx qui contiendra le nom de ce locuteur. Nous créons alors un modèle de locuteur en combinant le modèle du monde avec un fichier audio (.raw) de sa voix (le même que celui enregistré pour créer le modèle du monde). Nous utilisons pour cela la commande TrainTarget :
    ./LIA_RAL/LIA_SpkDet/TrainTarget/TrainTarget.exe --config ./cfg/target.cfg --targetIdList ./ndx/locuteur.ndx --inputWorldFilename world --debug false --verbose true
    Nous effectuons cette opération pour chacun des locuteurs qui seront acceptés par le système. Cela nous crée pour chacun d'eux un fichier locuteur.gmm dans le dossier gmm
  3. Une fois que sont créés ces modèles de locuteur, nous pouvons effectuer quelques tests.
    Pour cela, il suffit d'enregistrer la voix de la personne qui souhaite être identifiée et de la traiter (créer le vecteur de paramètres, normaliser, détecter l'énergie, re-normaliser) et d'appeler la commande ComputeTest :
    ./LIA_RAL/LIA_SpkDet/ComputeTest/ComputeTest.exe --config ./cfg/target_seg.cfg --ndxFilename ./ndx/locuteurs.ndx --worldModelFilename world --inputWorldFilename world --outputFilename ./res/locuteurs.res --debug false --verbose true
    Le fichier locuteurs.ndx contient la liste des personnes qui sont acceptées par le système. Cette liste est de la forme : "nom_du_fichier_raw nom_du_fichier_gmm" (exemple : "maxime maxime" pour des fichiers maxime.raw et maxime.gmm).

Nous devons maintenant appliquer tout cela à notre projet. Notre système est divisé en 2 parties : acquisition et reconnaissance

  1. Acquisition
  2. Reconnaissance

Interface Graphique

Consultez la page dédiée ci dessous

Interface graphique du client - Cahier des charges / Esquisses de l'IHM