PM2M-2016-RDSMining/Suivi: Difference between revisions

From air
Jump to navigation Jump to search
Line 49: Line 49:


=Expérimentations et Résultats=
=Expérimentations et Résultats=

==Fréquence des messages RDS==
[[File:Frequence_abhamon_bigard.png]]

==Répartition des messages RDS sans la période de nuit==
[[File:Camembert_min_abhamon_bigard.png]]

==Répartition des messages RDS avec la période de nuit==
[[File:Camembert_all_abhamon_bigard.png]]


=Photos et Vidéo=
=Photos et Vidéo=

Revision as of 13:20, 8 April 2016

Collecte et analyse des messages RDS de traffic routier

Etudiants M2PGI PM2M: Etudiants


Dépôt Git : github

Documents : Rapport - Transparents - Flyer - Video


Contexte

Projet par binôme (ABHAMON Ronan - BIGARD Florianà dans le cadre de la matière M2M du Master 2 Génie Informatique de l'université Grenoble Alpes (IMAG).

Objectif du projet

Récupérer les données RDS via un tuner FM et un BeagleBone pour les envoyer via un broker de messages dans un Elastic Search hebergé sur un serveur Amazon. Exploiter les données d'Elastic Search via Kibana afin de faire des statistiques détaillées sur les données envoyés par les différentes stations de radio (fréquence d'une musique, terme les plus utilisés etc).

Matériel utilisé

Technologies utilisées

Langages utilisés

Plan de développement

Mettre en place de façon parallèle les deux points suivants.

Client

  • Créer le programme en C de récupération des données parvenant du tuner FM
  • Créer le script en NodeJS qui enverra les informations RDS sur le broker de message du serveur
  • Mettre en lien les deux programmes afin qu'ils parviennent à communiquer ensemble (envoyer des commandes au tuner FM, envoyer les informations RDS sur le programme Node...)


Serveur

  • Installer le broker de message (mosquitto)
  • Paramétrer le pare-feu Amazon afin de pouvoir contacter le broker de message tout en gardant un minimum de sécurité
  • Installer Elastic Search et paramétrer l'index avec le mapping qui va bien pour pouvoir exploiter correctement les données
  • Installer Kibana et créer les graphes mettant en valeur les données RDS
  • Créer le script Perl qui insèrera les données du broker de message dans Elastic Search (tout en profitant de les rendre un petit peu plus propres en nettoyant les espaces blancs...)

Expérimentations et Résultats

Fréquence des messages RDS

Frequence abhamon bigard.png

Répartition des messages RDS sans la période de nuit

Camembert min abhamon bigard.png

Répartition des messages RDS avec la période de nuit

Camembert all abhamon bigard.png

Photos et Vidéo