Projets-2016-2017-IndoorGeoloc-SRS

From air
Revision as of 12:06, 30 January 2017 by Louis.Cochinho (talk | contribs) (Created page with "=1. Introduction= ==1.1 Purpose of the requirements document== This Software Requirements Specification (SRS) is designed to identify the requirements for our project cal...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

1. Introduction

1.1 Purpose of the requirements document

This Software Requirements Specification (SRS) is designed to identify the requirements for our project called "GeoLoc Indoor". The main goal of the project is to provide a solution to indoor geolocalisation problem. We are bound to develop an application able to locate BLE beacon in a building. This is an open source project so that maybe people find an interest in our app in order to make it take a step further. This document is a guideline listing the functionalities offered by our application and the solutions that the system provides.


1.2 Scope of the product

Geoloc Indoor is a project with several possibilities of use. One of them could be when someone, equipped with the app on its smartphones, is looking for an object (emitting bluetooth) or a person in a building where each room contains sensors. Those sensors are linked to server computing the distance from the emitting beacons to the sensors and gives a location (room, distance, route) to the user.


1.3 Definitions, acronyms and abbreviations

  • OpenStreetMap (OSM) : is a collaborative project to create a free editable map of the world.
  • STM32 is a family of 32-bit microcontroller integrated circuits by STMicroelectronics. The STM32 chips are grouped into related series that are based around the same 32-bit ARM processor core, such as the Cortex-M7, Cortex-M4F, Cortex-M3, Cortex-M0+, or Cortex-M0. Internally, each microcontroller consists of the processor core, static RAM memory, flash memory, debugging interface, and various peripherals.
  • Arduino : Programmable microcontroller able to generate and analyse electric signals. The Arduino measures the BLE signals. Data is sent to a server which will compute a distance.
  • Raw data : Data returned by the sensor sent to the server computing the distance.

1.4 References

1.5 Overview of the remainder of the document

In the rest of the document, we will describe our objectives, the way the system is supposed to work and the constraints the project implies.